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Abstract

This note summarizes the algebra of doing a kalman �lter with a pixel detector.

1 Introduction

In this example we are considering the repeating step of the kalman �lter. We assume

that we already have an estimator, extrapolated from previous hits, of the track pa-

rameters and the covariance matrix in the neighbourhood of the current hit. In this

example, the new measurement to be added on has more than one dimension; an ex-

ample is a pixel detector, for which the measurement vector has a dimension of 2. The

covariance matrix of these two measurements will, in general not be diagonal. Two

things which can lead to o�-diagonal elements are imperfect knowledge of alignment

and 
uctuations in the ionization; there may be other reasons too. The notation which

will be used is:

� The track parameters, which come from previous data points projected to the

current data point.

V The covariance matrix of �.

�

0

The new optimal estimator of the track parameters, after the current information

has been added.

V

0

The covariance matrix of �

0

.

d

m

The 2-d measurement.

V

m

The covariance matrix of V

m

.

d(�) The value of the measurements, as predicted by the extrapolated track.
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� �

i; j; k track parameter indices, ie �

i

r; s measurement indices, ie d

r

D The derivative matrix, D
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2 The solution

The new track parameters are found by minimizing the following �

2

with respect to

�

0

,
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d(�
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)� d

m
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T
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�1

m

�

d(�

0

)� d

m

�

+ (��)

T

V

�1

(��) : (1)

The solution is found by linearizing �

0

about �; that is,
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(2)

The next step is to set the derivatives of �

2

to zero and to solve for ��.
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= 0

Now, regroup and give the solution both in component and matrix form,
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m

(d(�)� d

m

) (5)

And the solution is,
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In this last step we used an identity discussed in the appendix.

Also, we recognize that the covariance matrix of �

0

is simply the inverse of its weight

matrix,
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�1

m

D

T

+ V

�1

�
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: (7)

Here the �rst term in () is the information added to the �t by the new measurement.

Finally, we recognize the total error on the measured quantities, using both the

measurements at this point and the information extrapolated from previous points,

V

m

(total) =

�
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m

+D

T

VD

�

(8)

In the limit that there is only one measured quantity, then V

m

= �

2

and D becomes

a column vector. In this case the equations reduce to the familiar form,
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Note that I have absorb a minus sign into the sign of the residual.
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A Proof of the identity

The identity to be proven is,
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To prove it, �rst show by explicit calculation that it is the right inverse.
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Now, multiply the �rst term in [] on its right by (V

m

+D

T

VD)(V

m

+D

T

V D)

�1

and

multiply the last term in [] on its left by V

�1

m

V

m

. Now, regroup to obtain,
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which proves the identity. A similar development shows that the identity is also the

left inverse, which completes the proof.

B When One Measurement is a Track Segment.

Consider the case that the measurement to be added is another track segment. The

notation will be that one wishes to merge (�

1

; V

1

) and (�

2

; V

2

) to obtain (�

3

; V

3

). This

can be done as a special case of equation 5 with track 1 coresponding to the \measur-

ment" and track 2 corresponding to the previously existing track. Therefore, D = 1,
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. Now equation 5 reads,
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Now recognize, V
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. Therefore,
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which is the expected form, analagous to the formula for the weighted mean of two

numbers,
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