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Abstract

This note uses a small toy problem, which can be computed exactly, to illustrate
the bias of the final result of kalman filter towards its starting value. It also illustrates
the numerical precision problem that occurs.

1 The Toy Problem and Its Exact Solution

Given, N measurements and their errors, (xi, σi) for i = 1 . . . N , compute the mean
and the error on the mean, (x̄, σ). The well known exact solution is,
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2 The Kalman Filter Equations

The Kalman filter is an iterative process that accumulates a state vector η and its co-
variance matrix V , by adding one measurement at a time. The kalman filter equations
to add a one dimensional measurment are:
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where ηn is the track parameter vector using information from points 1 . . . n; Vn is
the covariance matrix of η, using information from points 1 . . . n; dn is the measured
quantity at the nth point; dn(ηn−1) is the predicted value of the measured quantity at
point n, using only information from points 1 . . . (n − 1); and where the vector D is
defined by,
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Finally, the quantities with a subscript of n − 1 have the same information as their
counterparts with a subscript n but only use information from points 1 . . . (n − 1).

In a standard track fitting problem η is a column 5-vector, V is a 5x5 symmetric
matrix and D is a column 5-vector. By the statement of the problem dn and dn(ηn−1)
are scalars.

3 Doing The Toy Problem with a Kalman Filter

For the toy problem the state vector has length of 1 and the above equations simplify
considerably. Here I will introduce a slightly different notation:

• x̄n the kalman filter estimate of x, using information from points 1...n. This
corresponds to ηn in the above equations.

• s2
n the kalman filter estimate of the error-squared on x, using information from

points 1...n. This corresponds to Vn in the above equations.

• D is trivially 1.

With this notation, the kalman filter for the toy problem become,
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The equation for sn can be simplfied,
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One can set s2
1 = σ2

1 and start the recursion at n = 2 to obtain:
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which reproduces Equation 1; and we identify sN = σ.
The equation for x̄n also simplfies,
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One can set (x̄1, s1) = (x1, σ1) and start the recursion at n = 2:
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which reproduces Equation 2; and we identify x̄N = x̄ and sN = σ.

4 Starting the Kalman Filter

So far this toy problem is missing one critical feature of a real tracking problem. A
track fit begins with a set of starting track parameters η0 and a starting covariance
matrix V0 = diag(∞); as a practical matter the starting value of the diagonal elements
is some large number. How large will be discussed below. The Kalman filter then adds
the measurements, one at a time, starting from the first measurement.

The reason that starting values are required is that the first measurement does
not fully determine the track parameter vector. Indeed the first several measurements
may over-determine a subset of the track parameters yet leave other track parameters
undetermined. In the toy problem, however, the first measurement fully determines
the state vector so the artifice of the starting parameters is not required.

Never-the-less most of the critical features of the starting parameters can be added
to the toy problem, albeit in a rather artificial way. Consider a starting value of x0

with an error of σ0, where σ0 >> σ. With this addition one can set x̄0 = x0 and
s2
0 = σ2

0 and then start the kalman filter recursion at n=1. This has the additional
feature that the equal treatment of all N measurements is manifest.

With the addition of the starting parameters, the final results of the Kalman filter
are,
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These expressions differ from Equations 1 and 2 in that the sum starts at 0, not at 1.
Therefore,
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5 Computing the Bias

In the limit that σ0 >> σ, the expression for s simplifies to,
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plus terms of order (σ/σ0)
4 and higher. And the expression for xK simplifies to,
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plus higher order terms.
In the above, the only approximation is that σ0 >> σ. Provided this is true, the

result holds independent of the starting value, x0! Therefore, provided σ0 is sufficiently
large, the final result has a negligibly small bias towards the starting value.

In a realistic tracking problem, the initial value of any track parameter is likely to
be within no worse than 10 σ of the final answer. So, for σ0 ≈ 30 σ or larger, the bias
of the final answer away from the true answer will be no more than about 0.01 σ and
will often be much smaller than this.

Another consideration arises in realistic tracking problems. The propagation of the
track parameters and their error matrix from one measurement point to the next is non-
linear in the track parameters. This non-linearity can provide additional constraints
that the starting values be close enough to the true values that the derivatives D are
“good enough”.

6 Note on Numerical Precision

The numerical precision problem arises when computing s1 from the starting value of
the error, σ0, and the measurement error on the first data point,
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It was shown earlier that this simplfies to s1 = σ1 plus terms of order σ2
1/σ

2
0 . The

problem is that kalman filter code will actually evaluate this using a general purpose
subroutine that works for all steps in the iteration; an example of what such code might
look like shown in Table 1.
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double updateError( double Ssq, double Sigsq ){
double denom = Sigsq + Ssq;

double ratio = Ssq*Ssq/denom;

double Ssqnew = Ssq - ratio;

return Ssqnew ;

}

Table 1: Code fragment used to evaluate Equation 25.

The problem can be even more accute in a real tracking problem when the state
vector has a length of 5. In such a case, the numerical precision problem remains until
enough hits have been added to add information to all track parameters. A particularly
bad problem occurs when a subset of the track parameters are very well determined
but one or two remain undetermined; in this case V contains some matrix elements
that are very large, of order σ2

0, and others that are very small.
There are several possible ways to attack this problem. One option is to identify

the problem cases and branch to special code to handle the case. This can be done but
it has the potential downside of an ever increasing list of special cases.

A second option might be to keep V −1 instead of V as part of the state information.
As is seen in the toy problem, updating V −1 is particularly simple to update and does
not suffer from numerical precision problems: if 1/σ2

0 underflows to zero that is just
fine. The full matrix form of the equations are also numerically more robust when
expressed in V −1. I understand that some kalman filter code does do this; in this
method, V −1 is refered to as the information matrix.

However TRF is not well suited to this solution. In TRF, each hit is described in
a basis that is natural for that hit; the side effect is that one must perform a basis
transformation on (η, V ) between hits. If the state information is changed to (η, V −1)
then new basis transformation code needs to be written. If there are N types of bases
in TRF, there must be N2 transformation functions, each of which would require of
order a week to write. This makes such a change daunting. There is another possible
complication that I am not sure of: if V can be propagated with standard gaussian
error propagation, I am concerned that propagation of V −1 can grow tails. My only
basis for this belief is that, in standard tracking problems, if 1/pT has gaussian errors
then pT often has non-gaussian errors.

7 Summary

This note has shown that a Kalman filter has a bias away from the true answer and
towards the starting value of (x̄−x0)σ

2/σ2
0 , where x̄ is the final value of the parameter,

x0 is its starting value, σ is the final error on the parameter and σ0 is the starting value
for the error on the parameter. This argues for a large value of σ0.

This note has also shown that if σ0 is too large, then there is a numerical precision
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problem at the first iteration.
Code for a realistic problem may have a small window of σ0 that works well and it

can happen that no value of σ0 works well. In that case alternative solutions need to
be investigated. There are solutions but none are simple.
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