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In the Spring of 1967 I attended a theoretical seminar at which Pro-
fessor René de Vogelaere spoke concerning the stability of non-linear
periodic systems. The motivation was storage rings, with beams focused
by azimuthally varying fields (“strong focusing”); the question, the
effect of non-linear terms on an otherwise stable system; the presenta-
tion I found utterly fascinating. It recalled another seminar I attended
at Princeton* over a third of a century earlier, at which G. D. Birkhoff
discussed the stability of the solar system. I remember none of the
detail of that earlier seminar, but I have a strong memory of how an
apparently simple situation led rapidly and unavoidably into a maze
of complexity, leaving the original question “Is the motion of the
system stable for infinite time?*’ unanswered.

The common feature of the two situations is periodicity, the periodic
perturbation of one planet by another, or the periodic variation of the
focusing fields as seen by a circulating electron or proton. Because of
the repetitive nature of the situation, the solution for many periods of
the motion can be pieced together out of the general solution for a
single period. If x, y represent the values of a coordinate and its conju-
gate momentum (coupling with other degrees of freedom is not in-
cluded in this treatment) while x/, y’ are the values after one period,
the general solution can be written:

x' = x (x, )\ )
Y=y &)
where the Jacobian (9x’/ax)(dy’/dy) — (3x’/dy)(dy’/8x) must be
equal to unity if the equation of motion is derivable from a Hamiltonian.
These equations describe a mapping in a plane, which moves point

:‘ Where Professor Condon supervised the final year of my thesis work, on a problem
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x, y to point x’, ', and whose repeated iteration depicts the motion of
the system.

The unit Jacobian ensures that the mapping is area-preserving, that
is, it carries a closed curve over into one of equal area. It may happen
that a curve transforms into itself; it is then called an invariant curve.
The points inside a closed invariant curve will remain inside, and the
stability question is answered for such points; however they may move
about as the transformation is repeatedly iterated, they cannot escape
through the invariant boundary, and the motion that they represent
is stable. Points not so constrained may go rapidly to infinity, repre-
senting an unstable motion, or they may simply wander about in an
apparently aimless fashion, but with no clear tendency to get very far
away. They may seem to be stable, but stability after an infinite number
of iterations cannot be proved. These are the difficult cases that make
the subject so fascinating.

Professor de Vogelaere was discussing the transformation:

X =y+x } @
y=—x+xt=—x4+ @+ x»? )
This was chosen because the linear terms taken alone give a stable
motion, the non-linear terms are simple in form, and the transforma-
tion (using the first form given on the right side of the second equation)
is particularly suited for iteration on a digital computer. It has two
fixed points (points for which x’ = x, ' = y), one at the origin, and
one at x = 1, y = 0. Near the origin the motion approaches that given
by the linear terms alone, which is stable; this is called a stable fixed
point. The other is an unstable fixed point.
Before carrying the discussion farther, we should digress to consider
the linear case, whose solution is well known. The most general area-
preserving linear transformation about a fixed point is:

X =ax+ by}
Yy =cx+dy

with ad — bc = 1.

The stability is determined by the trace (@ + d) of the transformation

matrix. If (@ + d)/2 lies between —1 and +-1, the result of n iterations
of the transformation is:

3

) .
Xn = XoCOS pn + [5 (@ — d)xo + byo] ss’::l*;"

1 sin un @
Y = Yo COS un + [5 d— ay+ Cxo] S5 n’;

with cos u = % (a + d).
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. If (@+d)/2> 1, cos and sin are replaced by cosh and sinh in the
above equations; if (a + d)/2 < —1, the same substitutions are made,
and in addition cosh x and sinh yu are multipled by —1, cosh un and
sinh yn by (—1)». The trigonometric functions show stability, the
hyperbolic functions instability.

A relation of the form f(x, y) = const. defines an invariant curve if
JS(x', ') = f(x, y) for all values of x and y lying on the curve. It is easy
to verify by direct substitution that:

—cx? 4 by? + (a — d)xy = const. ®)

is an invariant curve for the transformation (3). These curves are
ellipses for —1 < (a + d)/2 < 1, otherwise they are hyperbolas. In
the stable case, successive iterations move a point around an elliptic
path. If u is a rational multiple of r, the point returns to its original
position after some number of iterations; such points can be called
fixed points of the corresponding order, eg,ifa+d=0,p=mx/2
and every point is a fixed point of the fourth order. If p is not a rational
multiple of , the ellipse is eventually densely covered and can be
visualized by simply plotting the results of many iterations. In the
unstable cases, a point moves along one branch of a hyperbola (or
alternates between the two branches if (a + d)/2 < —1), but it does
this only once; it does not return from infinity. A given starting point,
iterated forward (and backward using the inverse transformation)
generates only the skeleton of a curve. We, with superior knowledge
of the algebraic properties of the transformation, know that the hy-
perbola is an invariant; a computer blindly iterating the transformation
does not know this and gives us only a disconnected set of points.
When the non-linear part of the transformation is included, our supe-
rior knowledge vanishes, and we are left in a quandary; are there, or
are there not, invariant curves?

The asymptotes of the hyperbolas constitute a privileged class. In
these directions the hyperbolic functions combine to give single posi-
tive or negative exponentials. Successive iterations (forward along one
pair of opposite directions, backward along the other) lead to an in-
Creasingly dense set of points as the fixed point is approached. Reversing
the direction of iteration, a short densely occupied line segment in the
neighborhood of the fixed point generates the whole asymptote. This
remains true even when non-linear terms are added, and the asymptotic
line leads into a curve. The initial direction is determined from the
linearized form of the transformation, and the computer can then be
turned loose to extend the curve, until one runs out of patience or
Precision. The initial directions can be found from Equation (5), or
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directly from the transformation, noting that along an asymptote
y'/x’ = y/x. They are:

%=2ib(d——a:t\/(a+d)’—4) (6)
with points moving outward along the directions with the plus sign,
inward along directions with the minus sign.

We can now return to the transformation (2) and the presentation
of de Vogelaere. Differentiation about the point 1, 0 givesa = 2, b = |,
¢ =3, d=2; we then get dy/dx = V'3, and the initial directions
are at 60° to the x-axis. When extended by computer, the lines to the
right of the y-axis go harmlessly to infinity. Those to the left start to
bend toward one another, as if trying to surround the stable fixed point
at 0, 0, and at about —0.55 on the x-axis they intersect. This has great
consequences. A given invariant curve cannot cross itself; this would
imply that the transformation can go two different ways from a single
point, the intersection, but the transformation is single-valued. How-
ever, two different invariant curves can cross, and when they do they
are caught up in an endless dance. The intersection must transform to
a single point, which lies on both curves, so there must be another
intersection, and so on. The points on one curve are approaching the
fixed point, and the intersections come closer and closer, with the other
curve behaving like a wildly meandering river. We can call the region
enclosed by the two curves up to their first crossing the “inside.” The
law of preservation of areas requires that all outside loops have equal
area, and all inside loops have equal area. (The symmetry of the trans-
formation, which we have not discussed, requires that these two areas
are also equal to one another.) Outside loops become long, thin ten-
tacles reaching toward infinity; inside loops become “worms” curled
up in the interior. The development of this pattern, and the ingenuity
displayed by the “‘worms’ in avoiding contact with others of the same
family, are fascinating to watch.

What does this have to do with stability? If the two invariant curves
had joined smoothly on their first meeting*, they would have made a
single closed invariant surrounding the stable fixed point, and all
points inside would have been stable. (This does not violate the law
against crossing; curves do not cross the unstable fixed point, they
merely approach it.) Since this did not happen, every inside point is in
possible jeopardy of escaping. But it seems that the “‘worms” approach
the stable fixed point with exceeding slowness, implying that points
* “Joining smoothly” implies more than coincidence of slopes at one point. It

requires superposition over a length sufficient to preclude the formation of loops,
e.g. between points D and E in Fig. 2.
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started near 0, O will work their way out, if they do, with corresponding
slowness. Thus there is a region of ambiguity, in which both computer
precision and patience fail, and in which there seems to be no means
for decision. This is the fascination of the stability problem, which in
one form or another has occupied mathematicians for many decades.
I shall not go into further ramifications, such as the chains of “islands”
formed by invariant curves of higher orders—the complexity that can
be derived from the simple transformation (2) does not need more
emphasis.

At this point the reader may wonder why I wrote this. Is it intended
to be an elementary treatise on stability theory? No, but I felt that
some background was necessary to introduce my attempt to contribute
something to the subject. This arose from a remark at the seminar,
that there was no known case of a non-linear area-preserving trans-
formation with a finite region of guaranteed stability. This may have
been an overstatement, but I took it as a challenge to find at least one
case (not counting those that can be constructed by treating weak-
focusing problems by strong-focusing methods, in which conservation
of energy can be invoked). The first step was to choose a simple form
for the transformation, which contains one non-linear function of one
variable in one of the pair of equations, and which has unit Jacobian
regardless of the form of the function. The form chosen was:

’

x'=y } with the x'=—y —i—f(x)}. )
Yy = —x+f) inverse*: y =x
This is more general than it may appear at first. For example, the
transformation (2) can be converted to (7), with f(y) = 2y?, by the
change of coordinates X = x, Y + X? = y, the capital letters repre-
senting the variables in (2). Such a coordinate change, while it affects
the appearance of a mapping, does not change its topology, which is
what we really want to find. In representing physical systems, (7) is
adequate insofar as the non-linear behavior can be treated as lumped
at one place in each period. Let the basic linear system be represented
by (3) (with capital letters), and interpolate just before the observation
Plane a thin lens, defined as an element which adds a slope F(X)toa
Path which traverses it at a displacement X. At the lens, the displace-
ment is X’, and the change in slope is to be added to Y”, giving:
X' =aX+ bY } ®)
Y = cX+ dY + F(X')
Now make the coordinate transformation X = x,aX + bY = y, with
the result;

M
* The inverse transformation is here defined as the result of inverting the trans-
fOl'matxon, then interchanging the primed and unprimed quantities.
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x' =y

Y = —x+(@+dy+ bFy)]’ ®
Thus the function f(y) in the form (7) contains a linear part (a + d)p
arising from the basic linear system, in addition to the thin-lens func-
tion F(y), which may, of course, also have a linear term. For a check,
consider the case of free motion, with a =1, d = 1, and F(y) = 0.
The function f(y) = 2y, and the invariants in the x, y plane are straight
lines of unit slope, which convert to lines of zero slope in the X, Y
plane, as expected. If f(y) = 0, the system is in the center of the region
of stability, and the transformation is a clockwise rotation by 90°,
We must get back to our original task, to find functions f(y) such
that the transformation (7) gives a closed invariant boundary, ensuring
the stability of points lying within the boundary. The fixed points,
if any, lie at the solutions of the equations x = y, f(y) = 2y, where
x' = x,y = y. A fixed point is stable if —2 < df(y)/dy < 2, other-
wise it is unstable. One could presumably carry out a computational
program, following invariant curves from their beginnings at unstable
fixed points, and adjusting parameters in f(y) until they join smoothly,
by which closed boundaries could be constructed. This is not what
I mean; I am searching for cases which can be solved by analytical or
geometrical arguments. The direct approach, starting with a given
function f(y), seems to be intractable. We therefore try an indirect
approach: start with a given function x = ¢(y), and require that it
be an invariant under the transformation (7). This is the same as saying
that if x = ¢(p), then X’ = ¢()’), or in terms of the inverse function
oL, ¥y = ¢~ (x'). With these substitutions, the second equation of (7)

becomes:
o7H(x") = — () + fO). (10)
The first equation of (7) allows us to replace x’ by y in (10), giving:
SO) = o) + ¢7'0). (11

This is a remarkable result, of startling simplicity, which fell out
almost without effort on my part. It leads to not just one, but to great
families of functions f(y) giving regions of stability. It also has a simple
geometrical interpretation. The curve x = ¢~(y) is the mirror image
of x = ¢(y) in the diagonal axis y = x. For, x = ¢~() is equivalent
to y = ¢(x), which is derivable from x = ¢(y) by simply interchanging
the roles of x and y, which is the same as making the reflection about
the diagonal. Any pair of curves related by this reflection symmetry
can be invariants (with some restrictions that will be mentioned in a
moment), with the appropriate function f(y) being the sum of the two,
~ treated as functions of y. It is clear from the symmetry that ome could
just as well think of the curves as functions of x, and derive the same
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function f(x). If, for each value of x, the midpoint between the two
curves is plotted, the resulting curve is } f(x). Intersections of this curve
with the diagonal axis are fixed points, and those at which the two
symmetrically placed invariants also intersect are unstable. This curve
is also the basis of a second reflection symmetry. The second symmetry
is that of reflection parallel to the y-axis in the curve y = 1f(x), or
parallel to the x-axis in the curve x = 1 f(y); the first symmetry makes
these operations equivalent.

One can also start with a single function ¢ that describes a closed
curve with reflection symmetry about the diagonal. This function is its
own inverse, that is, the same functional form is used in giving y as
a function of x or x as a function of y. The sum in (11) is then the sum
of the two values of the function, if it is a double-valued function. If
curves are drawn that have more than two values, there may be trouble.
The requirement is that the values can be taken in pairs whose sums
are equal. This is a condition on the drawing of the curves; one can
no longer use any curve with diagonal symmetry. Some cases of this
kind are easily constructed, but the flexibility is lost.

The two-fold symmetry that we have found in the invariant curves
should correspond to a two-fold symmetry in the transformation itself,
and this is easily seen to be the case. Consider first the reflection sym-
metry about the diagonal x = y. This reflection is performed by inter-
changing the coordinates x and y. If this is done in the transformation
(7), the inverse transformation is obtained. This means that every
feature of the mapping is repeated as a mirror image reflected in the
diagonal. If an invariant curve has this symmetry already, its image
is itself, otherwise invariants come in symmetrical pairs.

The reflection corresponding to the second symmetry can be per-
formed by leaving x unchanged, and replacing y by f(x) — y. This also
converts the direct transformation (7) to its inverse, and the same
statements made about the first symmetry can be repeated about the
second. In fact, the transformation (7) is equivalent to the two

reflections:
x' =y
yo=x } 12
and
x'=x
13
V' =flx)— y} (13)

performed in sequence, while the inverse is obtained by reversing the
sequence. Each of the reflections has the determinant —1, but their
product has the determinant unity as required.

We can now look at some examples of curves with this two-fold
symmetry. The simplest case is that in which f(y) = 2ky, making the
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transformation linear. In the notation of (3), a=0,b=1, ¢ = —1,
d = 2k, and the invariant curves are:
x% 4 y? — 2kxy = const. (14)
i //
_At-y-kx
-~
'/
//’ E
P
//
//
>
s,
~
A P
-~
-~
~
XX F
//
- B
C
x_—

Fig. 1. The ellipse x? + y2 — 2kxy = const. is an invariant curve under the
transformation x’ = y, y’ = —x + 2ky. It is used here to show the twofold
reflection symmetry discussed in the text. The first symmetry operation is a
mirror reflection in the diagonal x = y, illustrated by the equality 4B = BC.
The second is a reflection parallel to the y-axis about the line y = kx, illus-
trated by DE = EF.

The quantity u of Eq. (4) is given by cos u = k, and if p is a rational
multiple of 7 the iteration of the transformation will generate only a discrete
set of points lying on the invariant curve. Thus, if £ = 0, the transformation
will give not a circle but four points equally spaced around a circle.

These are parabolas or hyperbolas with their principal axes at 45° to
the x-axis, and the first symmetry is obvious. The second symmetry
is seen by drawing a set of parallel chords, parallel to the y-axis, and
connecting their centers. These lie on a straight line of slope k, and
the second symmetry is thereby made visible (see Figure 1).
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The simplest non-linear case, at least in functional form, is that in
which f(y) is quadratic. The transformation (2) used by de Vogelaere,
as we have pointed out, can be changed into (7) with f(y) = 2y2. What
was not obvious in the beginning is that the change of coordinates
introduces a new symmetry that did not appear in the original coordi-
nate system, the symmetry about the diagonal; the “second symmetry”
was already present in the form of a reflection about the x-axis. In this
case the invariants do not join smoothly, so there are two complete
sets of invariant curves which are mirror images of one another, and
they are images in two different ways, because of the two-fold reflection
symmetry. This is illustrated in Figure 2. In Figure 3 is shown a further
extension of one of the curves, with “tentacles” and “worms.” Around

14 T T T T T T T T T T

12} yxiey -
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o8} \ f :
06} \ L B [ / :
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-0»8 - ~

-10 1 L 1 | | { J I L I
-10 -08 -06 -04 -02 0 02 04 06 08 10 12 14
X ——

Fig. 2. Initial portions of invariants under the transformation x' = y,
Y = —x + 2y?, leading away from (or toward) the unstable fixed point at
x = 1, y = 1. The arrows indicate the directions in which points are moved
by the transformation. The point pairs AG, BF, CE illustrate the first sym-
metry, the point pairs AE, BD the second symmetry. The areas of the loops
marked L are all equal.




228 TOPICS IN MODERN PHYSICS
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Fig. 3. A partial extension of the curves of Fig. 2, showing “tentacles’’ reach-
ing off the figure and “worms” in the interior. Since the entrance channel for
the “worms” becomes very narrow, the figure becomes difficult to draw com-
pletely as the iteration progresses.

Some apparently closed curves around the stable fixed poimt at x = 0,
¥y = 0 are also shown. The peculiar behavior near the origin seems less mys-
terious if one recalls that the function y = }f(x) approaches the limit of zero
slope, where the curve degenerates to four points, and where the slightest
perturbation can cause a slow migration about the center and a concomitant
slow change in radius.

the origin are shown some apparently closed curves generated by
starting at points on the diagonal and iterating the tramsformation
many times, then joining the resulting points. Are these really closed
curves? Do they represent motions that are stable for an imfinite time?
We don’t know.

Some simple cases with families of closed invariants can be con-
structed in the following way. First write down an equation for an
invariant curve, then solve it for y; if there are just two walues for y,
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their sum must be f(x). The first symmetry is satisfied if x and y occur
in a symmetrical fashion in the equation, and there will be just two
values for y if the equation is quadratic in y. The most general equation
with these properties is:

Axty? 4+ B(x?y 4+ xy?) + C(x? + y*) + Dxy = const. (15)

(A possible term in x + p has been omitted since it can be removed by
a translation of the coordinates along the diagonal.)
The function f(x) is then:

Bx? + Dx

SO =~ 4o ¥ Bt C 9

This function, divided by two, forms the curve about which the second
symmetry exists for the curve represented by (15); the same function,
with x replaced by y and put into (7), gives the transformation under
which (15) is an invariant. Note that (16) does not depend on the con-
stant on the right side of (15), so that a single transformation can
generate the whole family (15) of invariants.

The number of parameters in (16) can be reduced to two (or less in
some cases) since only the ratios of coefficients are significant, and one
of the ratios can be adjusted by a change of scale of the coordinates.
Some examples are given below:

() flx) = 1—24’%5 with the invariants: a7

x2y? 4 x2 4 y? — 2kxy = const. (18)

If —1 < k < 1, there is a stable fixed point at the origin, and all the
invariants are smooth closed curves (Figure 4). If k > 1, the fixed point
at the origin is unstable, and stable fixed points occur at x = y =
+Vk—1. A figure-eight shaped separatrix separates the plane into
three regions, which are all stable, in spite of the unstable fixed point;
points which move away from its vicinity always return along a closed
path (Figure 5).

(b) f(x) = T&_k_x}_z, with the invariants: 19)

x2p? — x? — y? 4 2kxy = const. (20

If |k| > 1, the system is unstable. If 0 < k < 1, there is a stable fixed

point at the origin and unstable fixed pointsat x = y = V1 — k. The
two rectangular hyperbolas (x +1)(y —1) = —kand (x —1)(y +1) =
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—k are separatrices; stable invariants fill the region between these two
curves, and unstable invariants lie outside (Figure 6).

x2

(c) fx) = — with the invariants: 2D
x%y 4+ xy? — x* — y? = const. 22)
8——— T ——
7t ]
6} yX

-3F 1
_4r .
sk _
-6F -
7k ]
-8 I 1 1 i 1 1 1 1 I 1 1 Il

-8 -7 -6 -5 -4 -3 -2 - 0 1 2 3 4 5 6 7 8

X ~——

Fig. 4. The transformation x’ = y,y’ = —x + f(»), withf(y) = 2ky/(1 4 y9),
has the family of invariant curves x2y? + x2 + y2 — 2kx = const. Some mem-
bers of this family, for the case k = %, are shown. See (a) in text. The function
Sf(x) plotted in the figure is the same as the function f(y) occurring in the
transformation, with y replaced by x. Some may find it more convenient to
use the inverse transformation, in which f(x) appears directly. If this is done,
the figures are unchanged except for the direction of the arrowheads.

There is a stable fixed point at the origin, and an unstable fixed point
at x = y = 3. There are four separatrices, the line x +y 4+ 2 = 0,
the two branches of the hyperbola (x — 1)(y — 1) = —1, and the
curve given by setting the right side of (22) equal to —8/27. The only
stable area is inside the loop of that curve (Figure 7).
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In cases (a) and (b) it will be noticed that there are ranges of the
parameter k in which the behavior was not specified. These were
omitted in order to avoid a diversion into the matter of second order
fixed points and invariants, but the reader may wish to make his own

T T 1 |
y=x

o
XY =

-2 -1

Fig. 5. Same as Fig. 4, for the case k = 1.36, plotted on a larger scale. The
fixed point at the origin, stable in Fig. 4, has become unstable, and stable
fixed points have appeared at x = y = =+0.6, surrounded by a figure-eight-
shaped separatrix, given by Eq. (18) with the constant set equal to zero.
_Separatrices in this and following figures are drawn with heavy lines. See (a)
in text.

investigation, and will find that it is not too difficult. In these omitted
ranges the mappings look like those in Figures 5 and 6 rotated through
90°, and there are fixed points of the second order on the diagonal

= —x. The transformation carries one of these points into the other,
and the next iteration returns it to the original point. The curves inside
the two closed 1oops in the rotated Figure 5 are described in an inter-
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1
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| L 1
-2 -1 0 1
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Fig. 6. The transformation x’ = y, y' = —x -+ f(y), with f(y) = 2ky/(1 — y?),
has the family of invariant curves x?y? — x? — y? 4 2kxy = const. Some
members of this family, for the case k = 0.64, are shown. The stable and un-
stable fixed points of Fig. 5 have here traded places, and the two separatrices
mentioned in the text under (b) intersect at the unstable fixed points and
bracket the central stable area. In addition, there are four separatrices consist-
ing of two branches each of the rectangular hyperbolas (x + 1)}(y + 1) = —k
and (x — 1)(y — 1) = —k, and two unstable fixed points of the second order
at x = —y = V1 + k. These appear near the lower right and upper left
corners of the figure. Arrowheads are omitted from some of the curves,
because the transformation moves one second order fixed point to the other,
and causes points on associated curves to move to other branches. Arrow-
heads would have meaning only if correlated with the result of two iterations
of the transformation, which returns a point to its original branch.

esting way, by a point which alternates between the interiors of the
two loops.

The final examples I shall give are derived directly from Eq. (11),
in that one draws any curve y = ¢(x) and its inverse ¢~'(x), and then
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derives the function y = f(x) which will make them invariants under
the transformation (7). The only restrictions on ¢ and ¢! are that
they be continuous, and that considered together they form a double-
valued function when solved for y (or x). Their derivatives need not

T U 1 ¥ ¥ \ 1 T

a0} .

30k =YX

-40f .
1 1 I i | 1 | 1
-40 -30 -20 -10 0 10 20 30 40

X—

Fig. 7. Another family of invariant curves, with f(x) = x2/(1 — x). (Note
that £ () in the transformation is the same function, with x replaced by y.)
See (c) in text. This function approaches x? at the origin, and the separatrix
forming a loop about the stable fixed point can be compared with the
“wormy” curves of Figs. 2 and 3. Note also the absence of the four-pointed
stars around the origin. The outlying separatrices intersect in fixed points of
the second order.

be continuous; functions made of straight line segments are acceptable.
The most obvious cases are those in which the two curves ¢(x) and
¢~}(x) meet in two unstable fixed points on the diagonal y = x, as in
Figures 6 and 8, but equally valid cases are given by closed curves con-
taining one unstable fixed point (Figure 5 and the central loop of
Figure 7) and by smooth closed curves (Figures 1 and 9). As an example
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of how one can construct a boundary, consider ¢(x) = —x -+ 2x?,
¢~'(x) = 3(1 £ V1 4 8x). For x <0, f(x) is the sum of the two
values of ¢~!(x); for x > 0, f(x) is the sum of ¢(x) and the positive
value of ¢~!(x). The reader can make his own figure for this case.

. Stable
S . fixed point

| I
-1 0 1

Fig. 8. The case f(x) = 3x — 1)/2 — k2/2(x + 1) + V'x2 + k2, with 0.1 as
the value of k. The invariant bonndary consists of two hyperbolas. The
results of two computer runs are shown. A run starting at x = y = —0.5
generates the apparently smooth curve surrounding the stable fixed point at
x = y =~ —0.328, and a run starting at x = y = 0.25 gives, for the first 400
iterations, the scattered points indicated as dots.

The enormous variety of such curves that can be drawn is obvious.
A fascinating point here is that the inverse problem, given f(x) to find
¢(x), or even to establish the existence or non-existence of a closed
invariant, seems completely intractable except by computer, or in a
few cases with particular analytic forms.

Equally difficult seems to be the determination whether a curve (or
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pair of curves) so drawn are singular cases of closed invariants for the
corresponding transformation, or whether they are members of a
continuous family of closed invariants, or even whether there are any
other closed invariants at all. As the reader may imagine, the first step
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Fig. 9. The invariant boundary in this case is given by the curve x* + y* —
4xy = 1. There is an unstable fixed point at the origin and stable fixed points

atx = y = =1/v2. The four invariant curves leaving the origin are followed
through their first crossing of the diagonal x = y, where they meet in pairs
at an angle of about 4°. Figure 10 shows the parts in the indicated rectangles,
on an expanded scale.

after the discovery of Eq. (11) was to investigate a variety of cases.
One of the earliest cases tried was that shown in Figure 6, with the
rectangular hyperbolas taken as ¢ and ¢!, and some computer runs
were made which seemed to show that there were closed invariants in
the area enclosed by the hyperbolas. The fact that all points are on
closed invariants in this case, with the hyperbolas serving as separa-
trices of a family of curves, was pointed out by John M. Greene of
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Princeton University. This observation gave the clue that led to the
discovery of the wider set of cases described by Eq. (15).

Figure 8 demonstrates the fact that a closed invariant boundary does
not necessarily imply that all interior points must lie on invariants,

The boundary consists of the two hyperbolas y = x — 1 4 Vxt 4 k2
and y = (x + 1)/2 — k2/2(x + 1). If the parameter k approaches
zero, the hyperbolas approach their asymptotes, and the boundary
approaches one made of straight line segments; k = 0.1 is the case
shown in the figure. We know that all points starting inside the bound-
ary will remain inside, but we do not know how they will move except
by computation. Since there is no unstable fixed point inside, there is
no way to compute an invariant curve; all that we can do is to pick a
starting point, let the computer iterate the transformation repeatedly,
and see where it goes. The results of two computer runs are shown in
the figure. The first starts at x = y = —0.5, and generates an appar-
ently closed curve surrounding the stable fixed point. After 10¢ itera-
tions there is no evidence of deviation from a single smooth curve
within the estimated precision of 10-'%. The second run shown starts
at x = y = 0.25 and the behavior is entirely different, as illustrated
by the first 400 iterations, plotted as points which scatter over a wide
area. The distribution shows evidence of structure, indicating the
presence of higher order fixed points and ‘“‘islands.” Similar runs
started at x = y = 0.5 and 0.75 also give scattered points. We seem
to lack completely any criterion, short of computation, for determining
whether a given starting point will lead to a smooth curve or a set of
scattered points, and in fact we have no way of being sure that the
smoothness of the smooth curves is absolute.

Figure 9 shows another case, in which a set of invariant curves
inside the stable boundary can be computed. The boundary is the curve:

: (23)

B —

xt+ yt— dxy =

The evaluation of ¢ and f requires the solution of a quartic equation.
There are two stable fixed points inside the boundary, and an unstable
fixed point at the origin, where the slope of f/2 is equal to 2. The four
invariant curves leaving the origin with slopes 2 & V'3 can be followed
by computer. It is found that they do not join smoothly to. form two
closed curves; they engage in the game of endless crossing and re-
crossing, all inside the outer invariant boundary. Figure 10 shows parts
of Figure 9 on expanded scales, illustrating early stages of this process.
We recall that the loops between crossings all have the same area, and
wonder why the available area is not finally exhausted. We do not
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reckon with the ingenuity of the curves, which find a way to make
loops overlap previous loops, without requiring that any curve cross
itself.
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Fig. 10. Panel (a) shows the behavior of the invariants in Fig. 9 in the r.eg_ion
of the first crossing at the diagonal; (b) shows a later stage, with incipient
“worms.”

Some examples of invariants made of straight line segments are
shown in Figure 11. The functions f(x) in these examples all have the
same general form, consisting of a straight line through the origin
extending from x = —1 to x = 1, and two lines with a different slope
(but both the same) extending to the right and left of the central seg-
ment, If certain relations between the slopes are satisfied, the resulting
transformations give closed invariants also consisting of straight line
segments. The relations are easily found if the invariants are drawn
first, then 3f(x) is constructed. In the cases illustrated, the central seg-
ment of }f(x) has the slope 2/3, while the outer segments have the
slopes 5, 3/2, 3/5, and —2/7. There is a stable fixed point at the origin,
and the first two cases have unstable fixed points at the vertices on the
diagonal x = y. The interior is filled with elliptical invariants up to an
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ye fx

Fig. 11. Some examples of invariant boundaries made of straight line seg-
ments. These cases all have a center of symmetry, and were designed to give
a function 3 f(x) consisting of only three segments. The slope between x = —1
and x = 1 is equal to % in all, and the slope of the outer segments is 5 in (a),
% in (b), ¢ in (c), and —% in (d). In the central regions, the transformation
gives a family of ellipses bounded by the ones drawn; between these ellipses
and the straight-line boundaries the behavior is more complicated, with
higher-order fixed points, islands, and areas of scattered points.

amplitude of 41 in x and y; between the last ellipse and the rectilinear
boundary the motion of points under the transformation seems to be
very irregular, but it is not clear whether it is ergodic. A still different
choice of slopes can give a case that is an analogue of that shown in
Figure 9, in the sense that it has one unstable and two stable fixed
points inside a fixed boundary, and can be used (with less computa-
tional labor) to illustrate the formation of “worms” inside a boundary.
Figure 12 shows the case with the slopes equal to 2 and —1/4, which
has stable fixed points at x = y = +9/5. ‘
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In an earlier paragraph a promise was made that cases could be
constructed with boundaries that are more than double valued. I shall
now fulfill that promise by describing a procedure by which this can
be done. Take any known case with a center of symmetry at the origin,
and erase the part of the boundary lying in the 4+, + quadrant. Replace
f (@) by f(x) = 0 to the right of the origin. Fill in the erased part of the
boundary by reflecting the part in the 4+, — quadrant about the x-axis.
The resulting completed boundary is an invariant under the transforma-
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Fig. 12. Another example of an invariant boundary composed of straight
lines, in which the function y = 3f(x) has the slope 2 between x = —1 and
x = 1, and the slope —1 outside this range. There are stable fixed points at
X = y = +2 and an unstable fixed point at the origin. Invariant lines leave
the latter at slopes of 2 == V'3. The continuation of these lines is followed for
a short distance. Their failure to join in closed figures will lead to the genera-
tion of “‘worms™ made of joined line segments (angleworms?). The ellipses
- surrounding the stable fixed points are regions of regular behavior.
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tion with the original f(x) to the left of the boundary, and f(x) = 0 to
the right. Starting with ellipses, we can get beheaded ellipses (Figure 13)
or doubled-headed ellipses (Figure 14), and here we see a four-valued
function acting as an invariant boundary.

y=x

X —o

Fig. 13. The beheaded ellipse. See text.

I had intended to let these be the last examples, but Dr. Laslett has
brought me one that is so striking that it would not be fair to the reader
to leave it out, even though it does encroach into the domain of higher-
order fixed points, which I had expected to say no more about. The
function 1f(x) is very simple; it is zero for positive values of x, has a
constant positive value k(<1) below x = —1, and is a straight line of
slope —k between these regions. The resulting pattern of invariants
is shown in Figure 15. In the center is the two-headed ellipse, as in
Figure 14; similar shapes in its interior are also invariants, but outside
is a region of irregular behavior. Embedded in this region there are
seven “islands,” each occupied by a family of invariants. The trans-
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formation carries points from island to island, in a sequence shown in
the figure. The reader can easily verify this sequence, performing the
transformation by reflecting first through the diagonal and then ver-
tically through the function y = 1f(x). Each island contains a stable
fixed point of the seventh order, and between neighboring islands
there are unstable fixed points of the seventh order. If the seventh-
order invariants are extended from these points, they do not join
smoothly; the sea between the islands is inhabited by worms!

y=x

—_——— —— — e —

X—-

Fig. 14. The two-headed ellipse. See text.

How can one understand a figure of this complexity? The two-
headed ellipse in the center suggests that the process described in
connection with Figure 14 has been performed; this can be undone,
leading to the restoration of the right half of the figure in a form
Centrally-symmetric with the left half. There are now six islands, but
the transformation still moves a point two steps clockwise, and the
fixed points divide into sets of the third order. The sequence is simpli-
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fied if the whole figure is rotated by 90°. Since it has reflection sym-
metry about both diagonals, the requirement of diagonal symmetry
is still satisfied, and the “second symmetry” is restored by redrawing
1f(x) as before, but with the opposite sign. In the rotated case (Figure
16) it is found that the transformation moves points from an island to
the adjacent one, and we have fixed points of the sixth order. (Inci-
dentally, by using the process of Figure 13 this can be reduced to the
fifth order.)
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Fig. 15. An illustration of “islands.” See text.

Let us now look at the stable fixed points in Figure 16. Points 1 and 2
(and 4 and 5) are equally spaced above and below the lines at y = k
(and —k); points 3 and 6 are equally spaced above and below the
origin; therefore the “second symmetry” is satisfied. Point 1 is at
x =y = 2k, point 2 at x = 2k, y = 0, etc. The limiting ellipses are
similar to the central ellipse, but smaller; with a horizontal extent
equal to 4k — 2 rather than 2. The location of the unstable fixed points
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is slightly harder to find, because some of them lie above and below
the sloping part of y = 3f(x). It turns out that the unstable point be-
tween islands 1 and 2 is at x = k 4 2k?, y = k, that between islands
2 and 3 is at x = k, y = —k, etc., ending with x = k, y = k + 2k?
for the point between islands 6 and 1. The mid-point between the
latter and the one below it is at y = i(k + 2k? — k) = k2, in agree-
ment with the value of 3f(x) at x = k.
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Fig. 16. Another set of “islands,” related to Fig. 15. See text.

Earlier 1 said that this is not a treatise on stability theory; it is an
account of the discovery, interpretation, and use of the relation ex-
pressed in equation (11), with illustrative examples. This relation does
not by any means solve the difficult problems of stability theory, but
it may be helpful, and it leads to some interesting territory, only a
small part of which has been explored. A brief report of the work
discussed in this paper was issued as UCRL-1795 (University of Cali-
fornia Lawrence Radiation Laboratory, September 5, 1967) with an
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Addendum dated March 29, 1968. The literature of stability theory is
very extensive; I give here one reference which can help to lead the
interested reader into that literature. This is a paper by M. Hénon,
“Numerical Study of Quadratic Area-Preserving Mappings,” in the
Quarterly of Applied Mathematics XXVI1I, 291-312 (1969). (The par-
ticular transformation that Hénon considers can, by a coordinate
transformation, be put into the form (7) with f{y) = 2y cosa + 2
sin «, where « is a parameter.)
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