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The Applicability of the Third Integral Of Motion: 
Some Numerical Experiments 
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The problem of the existence of a third isolating integral of motion in an axisymmetric potential is in- 
vestigated by numerical experiments. It is found that the third integral exists for only a limited range of 
initial conditions. 

1. INTRODUCTION 

THERE has recently been a renewal of interest 
in the question of the existence of the third 

integral of galactic motion (Contopoulos 1957, 1958, 
1960, 1963 ; Barbanis 1962 ; van de Hulst 1962, 1963 ; 
Ollongren 1962). A thorough review of the problem 
can be found in Ollongren’s work, and we summarize 
it briefly here. We suppose that the gravitational po- 
tential of a galaxy is time-independent and has an axis 
of symmetry. In a system of cylindrical coordinates 
R, 0, z, this potential is then a given function Ug (R, z). 
We are interested in the motion of a star in such a 
potential. In particular we ask: what part of the 6- 
dimensional phase space (R, 6, z, R, 0, z) will be filled 
by the trajectory of the star if we follow it for a very 
long time, corresponding to many revolutions within 
the galaxy? 

Since the phase space is six-dimensional, there must 
exist five independent conservative integrals of the 
motion ; that is, five independent functions 

IjÇR, d, z, R, d, z) (j= 1 to 5), 

which are constant along any trajectory. Conversely, 
a trajectory in phase space is determined by the five 
equations 

I^Cj 0=1 to 5), (1) 

where the Q are five constants. Each equation repre- 
sents a hypersurface in the phase space, and the trajec- 
tory is the intersection of the five hypersurfaces. 

But each integral Ij can be isolating or nonisolating 
(for definition, see Wintner 1947; Lynden-Bell 1962; 
Ollongren ,1962). A nonisolating integral is such that 
the corresponding hypersurface consists of an infinity 
of sheets which usually fill the phase space densely, so 
that for practical purposes the condition Ij=Cj does 
not give any information and is equivalent to no condi- 
tion at all. Thus from the physical point of view (as 
distinct from the mathematical one), nonisolating 
integrals have no significance. For that reason, isolating 
integrals are usually called simply “integrals,” and the 
nonisolating integrals are ignored. 

* Present address: Institut d’ Astrophysique, Paris. 

In the present case, two isolating integrals are known : 

/^^(R^+K^+^+i2), (2) 

h = R2d. (3) 

They are the total energy and the angular momentum 
per unit mass of the star around the z axis. It can be 
shown that two of the other integrals, for example /4 

and /5, are generally nonisolating. The problem is 
then : what is the nature of the last integral, /3 ? 

For many years, it was assumed that /s is non- 
isolating (see, for example, Jeans 1915, 1919; Lindblad 
1933; Smart 1938; Van der Pahlen 1947; Lindblad 
1959), on the ground that no third integral expressible 
in analytical form like 7i and /2 had been discovered, 
despite many efforts. But this assumption, as has been 
often remarked, is in conflict with the observed dis- 
tribution of stellar velocities near the sun; for it im- 
plies that the dispersion of velocities should be the same 
in the direction of the galactic center and in the direc- 
tion perpendicular to the galactic plane, whereas the 
observed dispersions have approximately a 2:1 ratio. 
More recently, a number of galactic orbits have been 
computed numerically (Contopoulos 1958, 1963 ; Ollon- 
gren 1962). Quite unexpectedly, all these orbits be- 
haved as if they had not 2, but 3 isolating integrals. 
As a result, there was some change of opinion on the 
subject. Attempts were made to prove theoretically 
the existence of a third integral (see Contopoulos 
1963). 

In the present paper, we approach the problem again 
by numerical computations ; but, in order to have more 
freedom of experimentation, we forget momentarily 
the astronomical origin of the problem and consider it 
in its general form: does an axisymmetrical potential 
admit a third isolating integral of motion? Thus, we 
allow the potential Ug to be an arbitrary function of 
R and z, not necessarily representing an actual galactic 
potential. 

2. REDUCTION TO A SIMPLER FORM 

As is easily seen, if we introduce the function 

U(R,z)= Ug(R,z)+C22/2R2, (4) 
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Fig. 1. Definition of the points Pi’. x>0, # = 0. 

where C2 is the constant value of the angular momentum 
(3), the equations of motion in R and z become 

R=-dU/dR, z=-dU/dz. (5) 

This shows that the problem considered is completely 
equivalent to the problem of the motion of a particle in 
a plane in an arbitrary potential U. We shall adopt from 
now on this new formulation and substitute æ and y for 
R and 2. The phase space (%,y,x,y) has now four dimen- 
sions, and there must exist three independent conserva- 
tive integrals of the motion. One of them is known and 
is isolating : 

Ii^U(x,y)+±(x2+y2). (6) 

It is the total energy of the star divided by its mass, as 
before. There is no integral of angular momentum, 
because the potential U has no symmetry in general. It 
can be shown that one of the integrals, say /3, is gen- 
erally nonisolating, and the problem is now : what is the 
nature of the second integral /2? 

Because of the existence of the energy integral (6), it 
is sufficient to know three coordinates of the star in the 
phase space, such as : x, y, ÿ ; the fourth coordinate x can 

Fig. 2. Equipotential lines of (11). 

then be obtained from 

U(x,y)+Ux2+f) = E, (7) 

if we know the energy E. Consequently, we can plot the 
trajectory in a three-dimensional space (x,y,y) (see 
Fig. 1). The value of x2 found from (7) should be non- 
negative, hence the condition 

U(xj)+iy2^E (8) 

which normally defines a bounded volume. 
If there is no other isolating integral, the trajectory 

will fill the volume defined by (8), and we shall call it 
ergodic. If there is a second isolating integral, the tra- 
jectory will, instead, lie on a surface, whose equation is 
found by elimination of x between (7) and I2=C2- 

Let us consider the successive intersections of the 
trajectory with the plane x=0, in the upward direction ; 
that is, the successive points Pi, P2, • • • of the trajectory 
which lie in the (y,ÿ) plane and satisfy 

x=0, i>0. (9) 

Fig. 3. A typical set of points F = 0.08333. 

If we follow the trajectory for an infinite time, there 
will be in general an infinite sequence of points Pi. If 
there is no second isolating integral, these points will fill 
an area, which is the intersection of the volume (8) with 
the plane 

U^y)+hy^E. (10) 

But if there is a second isolating integral, the points Pi 
will lie on a curve. Thus we get a simple criterion for the 
existence of the second integral: it is sufficient to com- 
pute a number of points Pi, plot them in the (y,y) plane 
and see whether they lie on a curve or not. This method 
will be used in what follows. 

The passage from a point Pi to the next one P¿+i can 
be considered as a mapping. This mapping is completely 
defined when the potential U (x,y) and the energy E are 
given. [For, suppose that a point Pi is given. It defines 
y and y ;xis zero ; and x is found from (7). Starting from 
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these four initial values, the trajectory can be integrated 
to the next point satisfying (9), which is Pt+i.] It can 
also be shown that the mapping is area-preserving []see, 
e.g., Birkhoff (1927, p. 152); and see Moser (1962) for 
an important theorem concerning such mappings]. 

3. RESULTS 

After some trials, the following potential was chosen 
for study : 

U (x,y ) = J (^2+/+ 2^—f yO (11 ) 

because: (1) it is analytically simple; this makes the 
computation of the trajectory easy; (2) at the same 
time, it is sufficiently complicated to give trajectories 
which are far from trivial, as will be seen below. It seems 
probable that the potential (11) is a typical representa- 
tive of the general case, and that nothing would be 
fundamentally changed by the addition of higher-order 
terms. 

Figure 2 shows the equipotential lines. Near the 
center they tend to be circles ; farther out they become 
elongated in three directions. The particular equi- 
potential consists of three straight lines, forming 
an equilateral triangle. 

A number of orbits were computed by numerical 
integration of the equations of motion : 

x = —dU/dx= —x—2xy, 

ÿ=-dU/dy= -y-x2+y\ (12) 

As a check, some of the orbits were computed inde- 
pendently by each of us, using different computers 
(CDC 1604 and IBM 7090) and different integration 
schemes (Adams and Runge-Kutta). The following 
results were obtained using the Runge-Kutta method ; 
during the numerical integration the energy was ob- 
served to decrease very slightly (<|0.000031 for 150 
orbits). 

THIRD INTEGRAL 75 

Figure 3 shows a set of points Pi for a typical tra- 
jectory. They seem to lie exactly on a curve. In fact, 
more points have been computed than those plotted 
here ; after the 150th point there is still no perceptible 
deviation from a curve. It may be interesting to remark 
that the successive points Pi, P2, Rs • • * (represented 
here by 1, 2, 3* • •) rotate regularly around the curve. 
The figure is topologically identical to one where the 
points Pi would lie on a circle of center O, the angle 
between OPi and OP¿+i having a constant value a. This 
constant is not the same for different trajectories. In the 
case of Fig. 3, its approximate value is a = 0.1143 (taking 
one revolution as the unit), a is generally not rational, 
so that no point Pi will come back exactly on the initial 
point Pi, and the infinite set of the points P; is dense 
everywhere on the curve. If a happens to be a rational 
number pf q, the point Pq+i will be identical with Pi and 
the orbit is periodic. 

Figure 4 shows the complete picture in the {y,ÿ) 
plane, for a given value of the energy: P =-5^- = 0.08333. 
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trajectory; the successive points Pi jump from one loop 
to the next. Let us call this feature a chain of islands. 
Other such chains have been found in various parts of 
the diagram. The number q of the islands in a chain can 
apparently have any value. As a rule, the dimensions of 
the islands decrease very rapidly when q increases. Each 
chain is associated with a stable periodic orbit; the q 
islands surround the q points which correspond to that 
orbit. Note that each set of closed curves on Fig. 5 can 
be considered as a chain constituted by only one island ; 
in both features no ergodic orbit seems to appear. The 
following properties are also suggested by our results: 

(1) there is an infinite number of islands (and of 
chains) ; 

(2) the set of all the islands is dense everywhere ; 
(3) but the islands do not cover the whole area since 

they become very small; there exists a “sea” between 
the islands and the ergodic trajectory is dense every- 
where on the sea. 

But, of course, mathematical proofs are needed to 
establish these points. 

Figure 6 shows the situation for a still higher energy : 
£=i = 0.16667. Again the picture changes drastically. 
All the isolated points correspond to one trajectory, and 
it is apparent that this “ergodic” trajectory covers 

Each set of points linked by a curve corresponds to one aimost the whole area. [The outer line on Fig. 6 is the 
computed trajectory. In fact, more trajectories and given by (10).] Its random character is most 
more points on each have been computed than shown strikingly seen when one plots the successive points; 
on this picture. It appears that in every case, the points they jump from one part of the diagram to another 
seem to lie exactly on a curve. These curves form a one- without any apparent law. Two of the sets of closed 
parameter family which fills completely the available curves of Fig. 5, those on the ÿ axis, have now dis- 
area, defined by (10). (The boundary of this area is appeared, presumably because their central invariant 
almost identical with the outer curve on Fig. 4.) . point has become unstable. The two other sets of closed 

In the middle of the four small loops are four in- curves have degenerated, each one into a chain of two 
variant points of the mapping (not represented on small islands, successive points Pi jumping from one to 
Fig. 4) ; they correspond to stable periodic orbits. The tbe other. No other chain of islands has been found in 
three intersections of curves are also invariant points, yig. 6 ; probably they still exist, but the dimensions of 
corresponding to unstable periodic orbits. . tbe islands are so small that finding them is difficult. 

This picture seems, like the previous computations by 
Contopoulos (1958, 1963) and Ollongren (1962), con- 
vincing evidence of the existence of a second integral. 
But here comes the surprise. Figure 5 shows the same 
picture in the (y,y) plane for a somewhat higher energy : 
£ = 0.12500. We still have a set of closed curves around 
each stable invariant point. But these curves no longer 
fill the whole area. All the isolated points on Fig. 5 
correspond to one and the same trajectory, just as the 
points on one of the closed curves ; but they behave in a 
completely different way. It is clearly impossible to 
draw any curve through them. They seem to be dis- 
tributed at random, in an area left free between the 
closed curves. Most striking is the fact that this change 
of behavior seems to occur abruptly across some divid- 
ing line in the plane. 

The picture is even more complicated than the above 
description would suggest. For example, the five little 
loops in the right of the diagram belong to the same Fig. 8. The iterated mapping (14), for a=1.6. 

Fig. 7. Relative area covered by the curves as a function of 
energy, as computed by the method described in the text. 
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The open circles in the middle of the diagram cor- 
respond to a trajectory of a new kind, intermediate 
between the closed curves and the ergodic behavior. 
They are approximately situated on an eight-shaped 
line, but with an important dispersion around it. The 
ultimate behavior of such an orbit is not known; per- 
haps the points will always remain in the vicinity of the 
same line, and fill an eight-shaped band; or perhaps 
they will after some time penetrate into the ergodic 
region. Some recent results, not shown here, are in favor 
of this last hypothesis. 

A remarkable feature of Figs. 4 to 6 is the complete 
change in the picture over a moderate interval of the 
energy E. For E = 0.08333, the area is completely 
covered with curves ; for twice that value, the curves are 
almost completely replaced by an ergodic region. If, 
instead of the energy, one considers the amplitude of the 
motion indicated by the equipotential lines of Fig. 2, the 
change occurs on an even smaller interval. 

In order to study this transition in more detail, we 
have computed, for a number of values of E, the pro- 
portion of the total allowable area in the (y,y) plane 
which is covered by curves. The following method was 
used to decide whether a given point Pi belongs to a 
curve or to an ergodic orbit. A second initial point Pi 
was taken very close to Pi (usually at a distance 10-7). 
Then a number (usually 25) of successive transforms of 
both Pi and Pi were computed. Experience had shown 
previously that if Pi and Pi are in a region occupied by 
curves, the distance PiP/ increases only slowly, about 
linearly, with i; but if Pi and Pi are in the ergodic 
region, the distance PiP/ increases rapidly, roughly 
exponentially. The quantity 

¿=25 
Z) (distance P^P/)2 (13) 

was computed, and the point Pi, as well as its trans- 
forms, were considered as belonging to the ergodic 
region if fx>ßCJ to a curve if ß<ixc) l¿c is a chosen con- 

Fig. 9. All nonergodic points in upper half of Fig. 8 ; 
Grid size = 0.02. 
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Fig. 10. Enlargement of area A; Grid size = 0.002. 

stant. The values found for ß covered a very wide range, 
from about lO-12 to 10+1 ; the criterion seems to be very 
sensitive, and the exact value chosen for ßc is not of 
great importance. Here /ucr=10~4. 

Figure 7 shows the results. Up to a critical energy 
(about P=0.11) the curves cover the whole area; there 
is no ergodic orbit. For higher energies the area covered 
by curves shrinks very rapidly. Thus the situation could 
be very roughly described by saying that the second 
integral exists for orbits below a ^critical energy,” and. 
does not exist for orbits above that energy. 

is the energy of escape in the potential (11) ; for 
P>J, the equipotential lines open and the star cam 
eventually escape to infinity, if the orbit is ergodic. The 
area in the (y,ÿ) plane becomes infinite and the relative 
area represented on Fig. 7 ceases to have meaning. No 
obvious connection exists between the critical energy 
and the energy of escape ; in the present case the critical 
energy is less than the energy of escape. But results 
from computations with Z7=|(rr2+y2—x2y2), not shown 
here, indicate the opposite situation, as do the results of 
computations by Ollongren (1962) with an approxi- 
mation to the Galactic potential. However, such a 
potential, derived from an actual three-dimensional 
potential, is dependent on the angular momentum 
assumed ; so that more computations for other values of 
the angular momentum and higher energies are needed 
to establish the prevalence of the third integral in the 
Galaxy. 

4. STUDY OF A MAPPING 

It has been remarked above that the whole problem 
can be reduced to the study of a plane mapping. As was 
suggested to us by Dr. Kruskal, one can then define an 
area-preserving mapping and study it directly, thus 
by-passing the lengthy integration of orbits. The ad- 
vantage of this method is that the computation is much 
simpler and much faster (by a factor 1000 approxi- 
mately), so that more examples and more points can be- 
computed. The disadvantage is that we are now quite.- 
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far from the initial astronomical problem. Also, it is not 
obvious that an arbitrary area-preserving mapping 
corresponds to a possible dynamical situation. For these 
reasons, we give only a short account of the experiments 
made. The following mapping was studied : 

Yi+1= F-a(X;+1-X;+13), (14) 

where a is a constant. The coordinates of Pi are named 
here and Yi. 

.7001   =  —— — r-r-: : :  

.698- * 

.696 - 

Y 

.692-. “• 

.690* >—^—< i 1 1— .—:—.—:—. 1_—J -.424 -.422 -420 -418 -.416 -414 -.412 -.410 -.408 -.406 -404 
X 

Fig. 11. Enlargement of area D; Grid size = 0.0002. 

Figure 8 shows the results for a =1.6. Each set of 
points linked by a curve is the set of the successive 
transforms of an initial point Pi under the iterated 
mapping (14). The isolated points are also the successive 
transforms of a single initial point. The picture is quite 
similar to the right part of Fig. 5. There is a central 
region occupied by a set of simple closed curves which 
surround the stable invariant point X = F = 0 ; a chain 
of six islands (instead of five) ; and an outer “ergodic” 
region. Other chains of islands have been found here too. 
This similarity suggests that the problem of the area- 
preserving mapping is really identical with the dynam- 
ical problem of the third integral. 

Up to 105 points have been computed for some of the 
curves, without any detectable deviation. 

Figure 9 represents the upper half of Fig. 8, and Figs. 
9-12 were produced in the following manner: initial 
points were chosen on a grid size indicated in the figure, 
throughout the whole area of the figure, and 1000 
successive iterations of each initial point were computed. 
Experience has shown that iterations of points which 
produce an aergodic orbit” are eventually mapped to 
infinity ; furthermore, this divergence is quite rapid, due 
to the cubic terms in (14). Thus in Fig. 9 for example, if 
all 1000 points remained in the vicinity of the origin 
(this being practically expressed by X2+F2<100) the 
position of the initial point was marked with a dot; 

otherwise, the position was left blank. The result is a 
replica of Fig. 8, the only difference being that Fig. 9 
shows, to the scale of the grid, all initial points whose 
successive iterations lie on closed curves. Note that it is 
somewhat distorted, because the vertical and horizontal 
scales are not equal. 

In order to investigate the mapping on a finer scale, 
we subdivide Fig. 9 into areas A, B, and C. Area A, ten 
times enlarged, is shown in Fig. 10. The most striking 
feature is the apparition of a multitude of small islands 
and tiny details, distributed in a random fashion. It can 
be remarked also that the boundary of the central 
region seems very sharp, whereas the boundary of the 
large island (on the left) is rather fuzzy. Area D of Fig. 
10 was again enlarged ten times; see Fig. 11. Again a 
host of new details emerge. It seems very likely that this 
would go on indefinitely ; with more magnification more 
details would appear, without end. These results sup- 
port the hypotheses made above, namely, that there is 
an infinite number of islands and that their set is dense 
everywhere. 

Area B, which is farther from the center, is repre- 
sented on Fig. 12. The density of the islands is much 
smaller than in area A. Also a strong density gradient is 
apparent in the vertical direction. Area C, still farther 
out, was found to contain no dots at all to a grid size of 
0.002 and therefore is not represented. Thus the density 
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.74L--! 1 I: 1_! 1 ^-1— 1.-.. * t 1 Ü 1 L 
-46 -.44 -.42 -.40 -.38 -.36 -.34 -.32 -.30 -.28 -.26 

X 

Fig. 12. Enlargement of area B; Grid size = 0.002. 

of the islands seems to decrease very rapidly as the 
distance from the central region increases. 

5. CONCLUSIONS 

We return now to the original three-dimensional 
problem. The above experiments indicate that the 
behavior of the orbits is in general quite complicated, 
and there seems to be no hope of a simple general 
answer, such as : (a) the third isolating integral always 
exists; or (b) the third isolating integral does not 
exist. 
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The true situation can perhaps be summarized as 
follows. Consider a given potential, and orbits with 
given angular momentum and energy. If the energy is 
small, it seems that a third isolating integral always 
exists. Perhaps it is only a quasi-integral ; but then, to 
the accuracy of the computers, it is as good as a true 
integral. If the energy is higher than the critical energy, 
there are an infinite number of separated regions in the 
phase space where such a third integral still seems to 
exist. The space left free between these regions is the 
“ergodic region” where the third integral is nonisolating. 
If the energy is further increased, the proportion of 
allowable phase occupied by this ergodic region in- 
creases very rapidly and tends to be the whole space. 

A number of questions are raised, for example : are the 
curves found here exactly or only approximately in- 
variant? What is the topological nature of the set of all 
the islands? Is it possible to compute the curves directly 
from the potential, without integrating all the orbits? 
The ultimate answer to such questions should rest on 
rigorous mathematical proofs, not on numerical experi- 
ments ; but the mathematical approach to the problem 
does not seem too easy. 

Finally, it should be mentioned that the problem 
considered here belongs to the general family of the 
dynamical systems with two degrees of freedom, and 
thus is a close relative of the famous restricted three- 
body problem. Although we cannot attempt it here, a 
comparison of the two problems would certainly be 
most fruitful. 
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