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0. Why are we interested in discrete time dynamics?

Reduction of a continuous-time systems (flows)

m Poincaré section
m Stroboscopic section of periodically forced systems

m Stroboscopic section of repitative systems

Solving (or approximating) continuous-time systems

m Numerical integrators (i.e. symplectic integrators)
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1. Basic definitions

Map composition is a sequence of consecutive applications of
mappings denoted by o operation

Fg(...(h(C))...))=fogo...oh(C)

m Associativity
(fog)oh=fo(goh)=fogoh.
m Non-commutativity
fog#gof.

If fog=gof, mappings g and f are said to commute.

Inverse of a composition
(fog)t=gtof™
m n-th iterate of the map

O =F(FHQ)=Fof™ (),  with Q) =¢.
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Consider a mapping (sometimes, or perhaps always, shortened for
map) T : M — M defined by a function f

Cn+1 = f(Cn)« ¢i € M.

Manifold M can be R”, C", S” or T".
The trajectory of (g is the finite set

{¢o. T(%0), T?(G0); - - -, T"(Co) }

The orbit of (o, M¢, € M, is a set of all points that can be reached
by iterations

{--T72(%), T71(Go): Cos T(G0)s T?(Go)s - - -}

The n-cycle (ot periodic orbit of periof n) is a solution of

T"(¢o) = Co
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2. Jacobian of transformation

Jacobian matrix, J;; = 0f;/0x;.

. _[04'/oq o4 /op]
2x2: = [8p’/8q op’/9p,

ox'/ox  Ox'/Opx  Ox'/Dy  Ox'/Opy |
opx'/Ox Opx'/Opx Opx' /Dy Opx'/Opy
dy'/ox  dy'/opx  9y'/dy  dy'/dpy
dpy'/0x Opy'/Opx Opy'/Oy Opy'/Opy |

4x4:]=
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3. Symplectic condition
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4. Local Stability

2x2

Fixed points

—2<TrJ(¢r) <2
n-cycles

2 <TrJ(¢M) <2
where

3 = 368y - 3¢ - - 3ED) -3l

Higher dimensions

Look for all eigenvalues of J.
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5. Example 1: Kicked rotator

Hlp.q.t] = & + K cos(q) 3202 o(t — n)

Pnt+1 = pn+ Ksin(6,)
9n+1 = en + Pn+1

p/gfo_\ \w // i




6. Example 2: Standard map/Chirikov-Taylor

map/Chirikov standard map

AE 1 =AE,+ eV (sing, — sinps)

¢n+1 = ¢n + %AE{H_I

&~

7)) ;
00 02 04 06 08410 00 02 04 06 08410
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7. Example 3: Hénon quadratic map
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8. Example 4: Gingerbreadman map
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We will consider area-preserving mappings of the plane

'(9,p), det |09/0a 04/0p| _
op'/oq 9p'/op|

q
P

p p

Identity, 1 Rotation, Rot Reflection®™**, Ref
10 cosf —sinf cos20  sin20
0 1 sin@ cosf sin20 — cos 26
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*The reflection is anti area-preserving transformation, det J = —1.
**In addition, Ref? = Id (or Ref = Ref™!). Transformations which
satisfy this property are called involutions.

More on reflections and rotations

Rot(f) o Rot(¢) = Rot(f + ¢)
Ref(f) o Ref(¢) = Rot(2[0 — ¢])
Rot(f) o Ref(¢) = Ref(¢+ 10)
Ref(¢) oRot(0) = Ref(¢ — 10)

)
)
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A map T in the plane is called integrable, if there exists a non-
constant real valued continuous functions K(q, p), called integral,
which is invariant under T:

V(q,p):  K(q,p) =K(d,p)

where primes denote the application of the map, (¢’, p') = T(q, p).

Example. Rotation transformation

Rot(f): ¢’ =q cosf — psiné
p'=qsinf+ p cosf

has the integral (g, p) = ¢° + p°.
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If @ and 7 are commensurable, then transformation Rot(#) has in-

finitely many invariants of motion.

Example. Rotations through angles +7/4 has another invariant

K(q,p) = ¢*°p> +T(q> +p°), V.

>0,

Rot(-mt / 4) <0 p
p J1/AN

e~
@i
=
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Thin lens transformation, F, and nonlinear vertical shear, G,

F: ¢ =gq, G: ¢ =gq,
P =p+£f(q), p=—p+f(q),

F = G o Ref(0), G = F o Ref(0).

q q

Transformation G is anti area-preserving involution, G = Id.
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A map T is said to be reversible if there is a transformation Rg,
called the reversor, such that

T '=RooToRy"

In the important special case, where Ry is involutory
T 1=RooToRy or RgoToRgoT=Id.

Hence, if we set R; = Rg o T, we see that Ry is also involutory.
Moreover we have

T=RgoR:i o T '=Rj0Rg

so that T is the product of two involutory transformations.
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Arnold-Liouville theorem

Integrable map can be written in the form of a Twist map
Jn+1 - Jn,
Opht1 = Op+2mv(J) mod2m,

where |v(J)] < 0.5 is the rotation number, 6 is the angle variable
and J is the action variable, defined by the mapping T as

1
J—hj{pdq.

Poincaré rotation number

Rotation number represents the average increase in the angle per
unit time (average frequency)
. T™e)—6
v= lim L

n—o0 n
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Theorem (Danilov)

Let T : R?2 — R? be the area-preserving integrable map with invari-
ant of motion K(gq, p) = K(¢, p’). If constant level of invariant is
compact, then a Poincaré rotation number is

[ )

where integrals are assumed to be along invariant curve.

K(q.,p) = inv M(a,p;K) HK[tp,q;t]
P p R
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|. Contribution of Edwin McMillan

From "“A problem in the stability of periodic systems’ (1970)

In the Spring of 1967 I attended a theoretical seminar at which Pro-
fessor René de Vogelaere spoke concerning the stability of non-linear
periodic systems. The motivation was storage rings, with beams focused
by azimuthally varying fields (“strong focusing”); the question, the
effect of non-linear terms on an otherwise stable system; the presenta-
tion I found utterly fascinating. It recalled another seminar I attended
at Princeton® over a third of a century earlier, at which G. D. Birkhoff
discussed the stability of the solar system. I remember none of the
detail of that earlier seminar, but I have a strong memory of how an
apparently simple situation led rapidly and unavoidably into a maze
of complexity, leaving the original question “Is the motion of the
system stable for infinite time?”” unanswered.
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I-1. McMillan form of the map

McMillan considered a special form of the map

Tim Zolkin, Sergei Nagaitsev Lecture 2



1D accelerator lattice with thin nonlinear lens, T = F o M
Ne [y}/_[cos¢+asin¢ B sin® ] [y}

y —y sin® cos® —asind| |y

S EEAL

where o, 8 and «y are Courant-Snyder parameters at the thin lens
location, and, ® is the betatron phase advance of one period.

Mapping in McMillan form after CT to (g, p), T = F o Rot(—m/2)

a=yY,
p=y(cos®+ asin®)+y S sind,

F(q) =2q cos® + S F(q) sin®|.
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Turaev theorem

INSTITUTE OF PHYSICS PUBLISHING NONLINEARITY

Nonlinearity 16 (2003) 123-135 PII: S0951-7715(03)35323-X

Polynomial approximations of symplectic dynamics
and richness of chaos in non-hyperbolic
area-preserving maps

Dmitry Turaev
Recommended by C Liverani

Abstract

It is shown that every symplectic diffeomorphism of R*" can be approximated,
in the C*-topology, on any compact set, by some iteration of some map of
the form (x,y) —= (y+n,—x + VV(y)) where x € R", y € R", and V
is a polynomial R” — R and 5 € R" is a constant vector. For the case of
area-preserving maps (i.e. n = 1), it is shown how this result can be applied to
prove that C"-universal maps (a map is universal if its iterations approximate
dynamics of all C"-smooth area-preserving maps altogether) are dense in the
C"-topology in the Newhouse regions.
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[-2. McMillan condition for invariant curve

a. Consider a decomposition of map in McMillan form
T = F o Rot(—7n/2) = G o Ref(0) o Rot(—7/2) = G o Ref(w/4).

b. Lines p = g and p = f(q)/2 are sets of fixed points for reversors.

c. If K(q, p) is invariant under transformation T, then it is invariant
under both, Ref(7/4) and G:

K(q,p) = K(p,q),  K(q,p)=K(q,—p+ f(q))

d. Solving for p = ®(q) from the invariant (g, p) = const

f(q) = d(q) + 2 '(q)|
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II. Suris theorem and recurrence x,.1 + X,_1 = f

INTEGRABLE MAPPINGS OF THE STANDARD TYPE

Yu. B. Suris upc 517.9

Tngy = 22 b 2y = eF (o, ¥), (1)

Faoe)= 3 e (a), el <eo 2)
k=0

THEOREM. Equation (1) has a nontrivial symmetric integral of the form
@ (@, p,8) = Og (z,0) + ey (z,0), (4)

holomorphic in the domain [x = y| < &,, in the following and only in the following three
cases:

a)  F(z,€) = (4 + Bz + Ca* + Da®)/(1 — e (E + Caf/3 + Da%2)),
@ (2, y) = (z — y)*2, O (z,y) = —A (z+ y)/2 — Bay/2 — C;zyl)(;;rz/é/)ﬁi oM

2 wz—g(Asinsz‘Bcosmz+Csin2mz ~+ D cos 2wx)
6) F(z,e)= o aretg

— %(Acosu)z7Bsinu:xr}»Cc()Sme—Dsianx—]-E) M
Dy (2, y) = (1 —cos 0 (x — )/, O (z,y) = (4 (cos ©z + cos ®Y) —
— B (sin wz + sin wy) + C cos o (z + y) — D sin o (z + y) + E cos o (z — y))/20
14 ae (B exp (—az) + D exp (— 2oz) — E)
1 — as (4 exp (az) 4 C exp (2az) 4 E) i

1
B) F(z, ) = sl In

Dy (2, y) = (cha (z — y) — 1)/, Dy (z,y) = (—A (** + ) +
+ B (7% 4 M) — M) - D M) 2F ch oo (z — y))/2a.
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Ill. Recurrence x,11 + Xp—1 = | X,

THE AMERICAN
MATHEMATICAL MONTHLY

Volume 90, Number 8 October 1983

ADVANCED PROBLEMS
Solutions of these Advanced Problems should be mailed in duplicate to Professor G. L. Alexanderson, Department

of Mathematics, University of Santa Clara, Santa Clara, CA 95053, by February 29, 1984. The solver’s full
post-office address should be on each sheet.

6439. Proposed by Morton Brown, University of Michigan.

Let {a,} be a sequence of real numbers satisfying the relation @, , = |a,| — @, _,. Prove that
{a,) is periodic with period 9.

THE AMERICAN
MATHEMATICAL MONTHLY

Volume 92, Number 3 March 1985
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. Periodic homeomorphism of the plane (1993)

continuum theory

and dynamical systems
A Periodic Homeomorphism of the Plane

MORTON BROWN  University of Michigan, Ann Arbor, Michigan
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V. Letter from Professor D. Knuth

"When I saw advanced problem 6439, I couldn’t believe that it wag
‘advanced’: a result like that has to be either false or

elementary!"

"But I soon found that it wasn’t trivial. There is a simple
proof, yet I can’t figure out how on earth anybody would discover
such a remarkable result. Nor have I discovered any similar

recurrence relations having the same property."

"So in a sense I have no idea how to solve the problem properly.
Is there an 'insightful’ proof, or is the result simply true by

chance?"
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VI. R. Devaney's Gingerbreadman map, f(p) = |p| + 1

Physica 10D (1984) 387-393

North-Holland, Amsterdam
A PIECEWISE LINEAR MODEL FOR THE ZONES OF INSTABILITY OF AN
AREA-PRESERVING MAP

Robert L. DEVANEY*

Department of Mathematics, Boston University, Boston, Mass. 02215, USA
Received 14 March 1983

In this note we study the global behavior of the piecewise linear area-preserving transformation x, = 1 — y, + xg|, »; = o,
of the plane. We show that there are infinitely many invariant polygons surrounding an elliptic fixed point. The regions between
these invariant polygons serve as models for the “zones of instability” in the corresponding smooth case. For our model we
show that some of these annular zones contain only finitely many elliptic islands. The map is hyperbolic on the complement
of these islands and hence exhibits stochastic behavior in this region. Unstable periodic points are dense in this region.

612345 o

g, 2. 10,000 iterates of a single point in the region A,. The

Fig. 3. The outer region is the ergodic region B,; the inner
aner boundary of A, is the outer boundary of B, 2. e

fegion is B, as shown in fig. |
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V. Lozi and Hénon maps
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