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Equations of Motion

▪ All of these are supposed to give the same results

▪ Newton’s second law:
➢ Complicated vector arithmetic & coordinate system dependence

▪ Lagrangian Formalism:
➢ n second-order differential equations

▪ Hamiltonian Formalism:
➢ 2n first-order differential equations

▪ Hamilton-Jacobi equation:
➢ is a generator of canonical transformation

for which                             . If             is separable, then the 
Hamilton-Jacobi equation breaks up into n ordinary 
differential equations which can be solved by simple 
quadrature. The resulting equations of motion are:
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Constants of motion
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Integrals of Motion I
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Quadrature

▪ Integration by quadrature either means solving an 
integral analytically (i.e., symbolically in terms of 
known functions), or solving of an integral 
numerically (e.g., Gaussian quadrature, Newton-
Cotes formulas).
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Integrating by Quadrature I

▪ Let’s consider a 1D (n = 1) conservative Hamiltonian 
system

▪ The equations of motion are 

▪ The constant (in time) function I1 is an integral of 
motion (1st isolating integral)

▪ I2 is a trivial non-isolating integral
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Integrating by Quadrature II

▪ Notice that there have been four steps in this 
procedure

1. Identification of the first integral, I1 .

2. Use of the integral I1 to reduce the order of the 
differential equation by one.

3. An explicit “integration by quadrature”.
➢ Beyond some simple polynomial potentials, this can be 

done only numerically

4. An inversion to obtain a single-valued solution q(t)
➢ May be very complicated
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Dynamics in Phase Space 
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Taxonomy of 2D fixed points

▪ The fixed points are those values of p0 and q0 for 
which the phase flow is stationary:
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Time-dependent systems

▪ Integrals of motion for time-dependent (non-
autonomous) systems (such as the Courant-Snyder 
invariant) are extremely rare and may require 
some luck to discover.

▪ In this class we will learn about two classes of 
time-dependent periodic systems, applicable to 
accelerators:
➢ Systems, where time-dependence is eliminated by 

transforming the time variable (similar to the Courant-
Snyder invariant)

➢ And systems, where time dependence is manifested in 
special delta-function like “kicks”.  Such systems will be 
called “integrable mappings”.
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Beyond n = 1
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▪ For dynamical systems with n = 1, we can 
integrate the pair of first-order diff. equations.

▪ At the end of 19th century all dynamical systems 
(for n > 1) were thought to be integrable.
➢ 1885 math. Prize was established for finding the 

solution of an n-body problem (n>2)

▪ However, nonintegrable systems constitute the 
majority of all real-world systems (1st example, 
H. Poincare, 1895)
➢ The phase space of a simple 3-body system is

far from simple. This plot of velocity versus 

position is called a homoclinic tangle.



Symplectic matrix

▪ The symmetry of Hamilton’s equations allows to 
consider the variables pi and qi on an equal footing.

If

▪ Hamilton’s equations can be written as:

where the matrix J is the 2nx2n symplectic matrix

and I is the nxn unit matrix.
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Integrals of Motion II

▪ A conservative (autonomous) Hamiltonitan system 
(i.e. H(q,p,t) = H(q,p)) with n degrees of freedom 
may have between 1 and 2n – 1 isolating integrals 
of motion.

▪ Definition: Two functions             and             are 
said to be in involution if their Poisson bracket 
vanishes, i.e. if 
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Poisson Brackets

If a quantity f(p,q) is explicitly time independent and it is in 
involution with H , then f(p,q) is an integral of motion.
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Integrals of Motion III

▪ It is obvious that for an autonomous system H is 
an integral of motion, [H, H] = 0.  And so is any 
function of H : [H, f(H)] = 0

▪ Isolating integrals must be functionally 
independent of each other!
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Integrals of Motion IV

▪ How many integrals of motion does one need to 
“solve” the dynamical equations of motion?

▪ In general, a system of n first-order diff. 
equations requires n-1 constants (integrals) in 
order to effect a complete “integration”.

▪ The Hamiltonian system has 2n equations. Does it 
mean we require 2n-1 integrals?
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How many?

▪ The Hamiltonian system has 2n equations. Does it 
mean we require 2n-1 integrals?

▪ Answer: It turns out, because of symmetric nature 
of Hamilton’s equation (a.k.a. the symplectic
nature), we need only n integrals of motion.
➢ This miracle occurs due to canonical transformations
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Liouville-Arnold Theorem

▪ The Liouville–Arnold theorem states that if, in a 
Hamiltonian dynamical system with n degrees of 
freedom, there are also known n first integrals of 
motion that are independent and in involution, then 
there exists a canonical transformation to action-
angle coordinates in which the transformed 
Hamiltonian is dependent only upon the action 
coordinates and the angle coordinates evolve 
linearly in time. Thus the equations of motion for 
the system can be solved in quadratures if the 
canonical transform is explicitly known. 
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Canonical Transformations
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Phase-space volume is preserved under 
canonical transformations

▪ Therefore, the canonical transformation must 
have a unit Jacobian.  Which of these could be 
canonical transformations? 
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Canonical transformation
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Type-1 Generator
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Harmonic Oscillator
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Harmonic Oscillator
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Harmonic Oscillator
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Harmonic Oscillator
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Phase space

▪ Notice that the phase space volume is preserved
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Four Basic Generators
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Summary (I)

▪ Canonical transformations
➢ Hamiltonian formalism is invariant

under canonical transformations

➢ Preserve phase-space volume

➢ Generating functions define canonical transformations

▪ What does it have to do with integrable dynamical 
systems?
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The Optimal Transformation I

▪ The practical use of canonical transformations is to 
find those that make the integration of Hamilton’s 
equations as simple as possible. The optimal case is 
when the transformed Hamiltonian depends only on the 
new momenta, Pi (like in our Harmonic oscill example)

▪ The equations for Q’s can be immediately integrated

▪ The n momenta Pi are the integrals of motion, that 
enable us to perform the integration.
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The optimal transformation II

▪ We can now transform the solution to our “old” 
original pi and qi.

▪ Of course, we have to be able to do two things:
1. Find these magical new variables P 
2. And, know how to correctly transform the Hamiltonian 

into its new representation.
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The optimal transformation III
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Motion on the tori
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Motion on the tori
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Integrable Hamiltonians IV

▪ The idea of action-angle variables is to find the pair of 
conjugate variables such that the conjugate “coordinate” 
increases by 2π after each complete period of motion .
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Hamilton-Jacobi Equation

▪ Our goal is to find the canonical transformation to a set of 
constant conjugate momenta. We will use the F2 type 
generator,

where  the βi are the “new” coordinates.  We obtain the 
Hamilton-Jacobi equation for S in n independent variables

Here, the right-hand side is to be viewed as a constant 
quantity.

Solving this equation is just as difficult as the canonical 
equations of motion, except for several classes of dynamical 
systems: (1) one-degree of freedom and (2) separable  
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Action-Angle variables in 1D

▪ This is the definition of the action variable

▪ In 1D, its value does not depend on the choice of p
and q
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Action-Angle variables in 1D

▪ We can now invert I(E) → E(I)=K(I)
▪ The canonical equations of motion can now be 

solved: 
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Separable systems (n-degrees of freedom)

▪ The H-J equation for n > 1 cannot, in general, be 
solved unless it is separable, i.e.

▪ Then               is a function of only one coordinate 

and we can define a set of action variables
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Separable systems

▪ A rather simple example:

▪ More examples of separable systems can be found 
Landau and Lifshitz “Mechanics” 

▪ Some systems are separable in multiple coordinate 
systems (e.g. Cartesian, polar, …)
➢ Then, the Action-Angle variables are not unique.
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Summary

▪ We are trying to draw a distinction between 
integrable and non-integrable systems. The latter 
can exhibit chaotic behavior (leading to particle 
losses in accelerators), whereas the former 
exhibits stable periodic behavior. 

▪ The question remains: given a system of equations, 
how can one tell a priori whether or not they are 
integrable?

▪ We will present several accelerator focusing 
systems, where we start the design with a non-
linear integrable system.
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Summary

▪ The definition of integrability is simple to state: 
an autonomous n-degree of freedom Hamiltonian is 
integrable if N independent integrals of motion 
exist and these are in involution with each other. 
However, a failure to find such a set of global 
invariants does not exclude the possibility that 
the Hamiltonian system in question is integrable.
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Extra slides

S.  Nagaitsev, Jan 28, 2019
43



Simple example 1
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Simple example 2

▪ Let’s try one example: 
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Finding the Generator
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