From Playstation to Supercomputers:

Accelerating Physics with GPUs

WESH Clelaly
University of Kentucky
6 January 2019




Introduction ng

* | am a particle physicist (and hence the talk will be mainly about that)
* | work on the Muon g-2 experiment (so more details about that)

* There are many great applications of GPUs in physics outside of HEP and
g-2, which | am not an expert on, but | will mention some interesting use

CasSes.
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CasSes.

But actually today is my last day, so | will also talk a bit about what I'm doing next...
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Improvements in Computing Performance TiTKE

Apollo 11 (1969) Macintosh Centris (1992) Macbook Pro (2004) Macbook Pro (2018)
1 MHz 40 MHz 1000 MHz 4600 MHz (x6)
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What is a GPU?
* GPU = Graphics Processing Unit

* Designed to make pretty graphics for video
games

* Uses massive parallelization to process
thousands of threads simultaneously

 Technical definition: “A specialized electronic
circuit designed to rapidly manipulate and
alter memory to accelerate the creating of
Images in a frame buffer” [Wikipedia]
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Moore’s Law is Dead without GPUs Tﬂ(ﬁ

* Moore’s Law: the number of transistors in a dense integrated circuit doubles
about every two years

GPU-Accelerated
Computing

GPUs are the future of high
performance computing!

2000 2010

40 Years of CPU Trend Data
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History of GPUs
* 1970s: Arcade System Boards.

LIVES mim mim
* 1980s: First video graphics cards with

16 bit color bitmaps I N T N N N W
* 1990s: Real-time 3D graphics emerge BB & 2

» 2000s: Nvidia GeForce3 capable of
programmable shading & 2 TN a: S

=

» 2010s: Virtual Reality, HPC, Al
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GPUs in high performance computing

* |In 2003 UIUC built a 500 gflop supercomputer
by linking the graphics cards of 65 playstation 2
gaming consoles — total cost < $50Kk.

* NVIDIA introduced CUDA in 2007 — enables
relatively simple C++ programming for GPU
applications.

* In 2012 NVIDIA introduced it's TESLA line of
GPUs: The first designed specifically for HPC
rather than graphics.

* |In 2018 Summit came online — the worlds
fastest Supercomputer is based on GPU
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GPUs in high performance computing ig(g

+ In 2003 UIUC built a 500 gflop sescammil AL CRUEPE
by linking the graphics cards of 65 playstation 2

gaming consoles — total cost < $50k. flops = "floating point
operations per second”

* NVIDIA introduced CUDA in 2007 — enables
relatively simple C++ programming for GPU
applications.

Provides a measurement of

computer performance.
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* In 2012 NVIDIA introduced it's TESLA line of
GPUs: The first designed specifically for HPC
rather than graphics.

* |In 2018 Summit came online — the worlds
fastest Supercomputer is based on GPU
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Current state-of-the-art hardware

* NVIDIA Tesla V100
- 7.8 tera-flops double precision
- 5120 CUDA Cores
- 15.7 tera-flops single precision
- 125 tera-flops deep learning

» Can attach via NVLINK (300 GB/s) or
PCIE (30 GB/s)

* Provides “high performance computing
IN your desktop”
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Current state-of-the-art hardware %

16x Tesla V100 32GB
12x NVSwitch

S+ +— NVLink Plane Card

— 8x EDR IB/100 GigE

— —— 2x Xeon Platinum

1.5TB System Memory

30TB NVME SSDs PCle Switch Complex
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Summit
 Located at Oak Ridge National Lab

» 27.648 Nvidia Tesla V100 GPUs
» 200 petaflops
* 13 MW of power

* Currently the world’s most powerful
supercomputer.
- (#2 in China and #3 at LBNL)
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Applications of GPUs (non-physics)

* Artificial Intelligence (Al) /
Deep learning

» Self-driving cars

* Medical Imaging

» Graphics!
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Applications of GPUs (physics)

* Massively parallel simulations of
black holes(m. Liska et al. Mon. Not. R. Astron.
Soc. Lett. 474, L81-L85; 2018)

» Multi-object Adaptive Optics for E-
ELT (D. Gratadour & H. Ltaief)

* Molecular simulations to explore
artificial photosynthesis with QBox

» Galaxy classification with machine
learning (space.ml)

» Simulation of stellar explosions on

| “Supercharge your data wrangling with a
Summit (E. Schneider, arXiv:1410.4194) graphics card”, Nature 562, Oct 2, 2018
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GPUs for machine learning iﬂg

Up to 16x More Inference Perf/Watt

* Deep learning applications uCPU-Only mGPU mGPU +GIE
can be dramatically 7
accelerated when run on a . 6
GPU. S 5
Sy

1 3 128
Batch Sizes
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What is machine learning?

A mechanism of using artificial
intelligence to “teach” a computer to
identity patterns using neural networks.

Can be significantly accelerated by
running on GPUs or other highly parallel
architectures.

In use by many other particle physics
experiments.
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Deep Learning in Particle Physics

Instance
Segmentation

Object Detection

 Neural Networks invented to do image
recognition (Facebook, google, etc)

* Convolutional neural networks have been BRI ) B
successfully applied to improve data CAT, DOG, DUCK _ CAT, DOG, DUCK
processing for many Fermilab neutrino *
experiments. A

Entries 3885000

* Active machine learning community at
Fermilab.

Quad noise

Beam splash

B 1 S SR R TN NN N TN SN N (NN SUNN Y TN TN NN TN SR MUY TR AN MO TN SN NN NN SN 1
8000 100 200 300 400 500 10

 Many opportunities to apply deep learning.
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Using Deep Learning to look for Neutrinos

* CNNs identify particle tracks in the MicroBoone detector

MicroBaoNE
Simwulaten

\
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What is Muon g-2?

* Muon g-2 Is an experiment to measure the
magnetic moment of the muon.

* Muons (like big electrons) are injected into
a 50’ diameter magnetic ring.

* As they travel around the ring, they
precess like tiny tops.

* We measure this precession frequency to
infer how muons interact with the quantum
background and the rest of the universe.
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if I were to put my money on 2 |

something that would signal new physics, it’s

the g-2 experiment at Fermilab. I think it’s

really fascinating.
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Why GPUs? L

* The GPUs dramatically improve performance by
parallelizing processing.

» Technology was developed for commercial applications, NVIDIA.
so it is well supported. CUDA

» Easier to code in C++ than to learn specialized language.
» Without GPUs, we could not keep up with our data rates.

’P"_
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o
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Muon g-2 Data

* The ring is filled with muons 12 times per second.

* Each time a fill enters the ring, we record our detectors for almost 1
millisecond to record all of the muon decays.

» Each decay puts a tiny spike in the data, which we need to keep. 99% of the
data does not have this tiny spike, and can be thrown away.

* The total data rate is 20 GB/s. Imagine downloading 10 iTunes movies to
your computer every second for the next two years — that’s a lot of data!
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How data is processed online in GPUs Tg{g

* ldentify and save regions of the waveform containing positron hits.
* Atypical waveform will have ~180 islands.

segment 2

h1_segment 2

— Entries 560000
0 B | Mean 1.267e+04
B RMS 1331
~500 —
i 1. Identify samples above threshold.
— 2. Extend islands
—1000— 3. Combine islands
- 4. Save islands
~1500 —
—2000 [ |
[ | | | | | | | | | | | | | | I | | | | | | | | | | | I | | |
13400 13600 13800 14000 14200 14400 14600
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Data Flow

20

1 Gbps CAT6 x18

10 Gbps Fiber 28| | to 10 Gbps fiber

200 MB/s
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Using GPUs for data simulation

 We also use GPUs to create
simulations of our data.

 We use CUDA to multithread the
simulation on Nvidia GPUs, so we can
simulate thousands of particles at the IS SnSigy clevistion
same time.

Entries

11111111

* The simulation runs on the Open /
Science Grid, and can simulate 3 years -
of data in about 2.5 hours. ol Nl Aol R

0 5000 10000 15000 20000 25000 30000 35000 t [40(])00
ns
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What we learn from the simulation Tﬂ{g

» Can simulate effects from pileup, pedestal variations, beam effects.
Ratio to truth

=lllllllllIlllllllll]lllllllll]lll

- hratio
1.005 f—---ee thresho’d 24 ................... — — S‘"mes 1862223 '
i § 5 5 R:Aasn 1295 signal
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1: il L h., a4, l. -lll‘ u llflr N J. ul I pedestal .. 1 pUIse UnderShOOt
'. P ! T~ "\" —_— affects w2,4,8
: left pedestal 2®  M9%Rgnt pedestal calc differently
0.095 — oo g _ samples samples
- A
099 B 0 1 17 A J— E
I N N T T D signal
. black uncorrected : threshold :
0.985 K — e S‘h'é'd'c”)'w‘Wi'h'd'c'j'w‘cc'ffé'ct'ic‘h ...... — redestal .{ ....... vh--- l: ....... split pulse
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Comparison of different pileup

correction methods.
2% Fermilab
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Aside: Medical Imaging
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Conclusion

» GPUs are revolutionizing the world of High
Performance Computing, and creating new
possibilities for computing in physics.

* The increased parallelization available in
GPUs is creating a boom in Artificial
Intelligence, which we are just learning how to
apply both in industry and in physics.

* Many particle physics experiments are using
this technology to accelerate data processing
and simulation.

24  1/6/19 W. Gohn | Accelerating Physics with GPUs

b S

IT.IS VOLTAGE DIVIDEDBY
CURRENT,,

2t Fermilab



backup

JC i
2 Fermilab
25 1/6/19 W. Gohn | Accelerating Physics with GPUs



Convolutional Neural Networks
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result of applying a filter to the image

The new feature map is the next input

Activations of the network at a particular layer
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Using Machine Learning to look for Neutrinos Tﬂ{g

 Running large-scale machine learning Vp+ N2 g +X
applications on Summit (and I i
oreviously TITAN) W
» Network is trained using simulation DR
data to identify vertex of particle decay === !
from 2D vector input (E, position) \\
+ Significantly outperforms track-based - \\\
reconstruction methods. " 1T TN
 Utilizes “Domain Adversarial Neural R R R R R R R \"

5 meters

Networks”, which minimize bias

coming from the MC (arXiv:1505.07818) from G. Perdue

J€ -
2 Fermilab
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Using Machine Learning to look for Neutrinos TiTKE
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* To search for neutrino oscillations,
must effectively identify electron,
muon, and tau type neutrinos.

» Using CVN (Convolutional Visual
Network) for event classification.

* Network is based on the first
Googlenet, which is a 22 layer deep
network that won ImageNet2014.

2= Fermilab



Generative Adversarial Networks (GANSs) Tf»!{g

* A GAN can be used to perform an incredibly fast particle physics simulation.

* One network is trained to learn what particle physics events look like using real or simulated
data.

* A second network generates fake events, which are sorted by the first network to determine
whether or not they look realistic.

* Currently being used in LHC experiments.

Rgalworld —  Sample ~\
images '\.\ Real
\\\ . =
>» Discriminator |—— & — &
3 / O .
i ,,c’
z O / Fake
-§ @ «|  Generator |[——{ Sample [
e O
[
b
|
-
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GPU Nodes on Open Science Grid ng

* Run on Open Science Grid GPU nodes to simulate 101" positrons in 2.5
hours.

» Currently two OSG sites with GPU nodes available:
— Omaha: Nvidia Tesla P100, 3584 Cuda cores
— Syracuse Orange Grid: GeForce GTX 750 Ti, 640 Cuda cores

* Must insure that code is optimized for either architecture.

JE i
2 Fermilab
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What we learn from the simulation

* Results of the simulation were used to set DAQ parameters.

10" omega_a versus start time
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Improved Estimation of statistical uncertainties

* Must calculate statistical error on *sum® of integrals from many bins of
histogram.

* How do we handle lost energy?

* Particle that deposits a portion of energy in an edge crystal
* Energy that does not pass threshold in one crystal but does in another

* How does pileup affect the uncertainty?

hestimateEnergyErr
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