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Wakefields and Impedance

Eric Prebys, FNAL

Consider the effect that one particle can have on subsequent particles through
the interaction with the environment (beam pipe, RF cavities, etc)

The fields of a single particle moving relativistically are
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If the particle is propagating through a beam pipe, we can express the
charge and current densities as (homework)
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By symmetry, we expect only
E_E,, and B,

components. We also expect the solution to propagate along the beam pipe
with the particle, so we transform to
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Recalling the appropriate Maxwell’s equations, we have
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For any component of the field f, our transformation imply
0 .
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if(r,z,t) =(ik) f(r.z.1)
0z

9 _ N ik(z—ct)
gf(r,z,t)— _[ e (r)dk

Move the integral completely outside, and this becomes
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Combining the second and the third gives
oF, _

o

EZ = A (constant)

0

Plug this into the first equation, we have

Multiply through by r and integrate
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To solve for A, we look at the wall boundary, where
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Now our equations become
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Plug this back into the first equation
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Evaluate at the wall of the beam pipe of radius b

r<b: E = A (constant)
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To keep solution finite, Im(1)>0
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To find By, use P
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Integrate and rearrange some terms
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Matching the solutions at r=b, we get
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Solve for A, and after a bit of algebra, we get
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We now Fourier transform back into the lab frame to get
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Wake Functions

We are looking for a function which describes the effect that particles have
on the subsequent particles. We will look for the average fields created by
particles in their wake.

F

Trailing distance

This will represent the average forces that a particle trailing the lead particle
will experience a distance s behind the lead particle, due the wakefields it
creates. The total time derivative is thus zero
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So, for example, the r component of @Xg:,%_é is
t
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In terms of forces
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We can likewise show (homework) that
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We can write a general solution as
F. =eQ,mr"" cos(mO)W, (s)
F,=—eQ,mr" " sin(m)W, (s)
F. =—eQ,r" cos(mO)W,(s)
ecB, =Q,r" sin(mO)W,(s)

Verify for the r direction. We want
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r d0 ds °
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W(s) and W’ (s) are called the wake functions. Often, W(s) is referred to as
the “transverse wake function” and W’(s) as the “longitudinal wake

function”.
m= "mode number"

Q,, = charge contributing to that mode (watch units!)

Assume a harmonic component of the beam structure
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= angular frequency at fixed point

Consider the 0 mode in the longitudinal direction

sz = _{’IQOWO’(S) = eEz
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So we can write the field induced by the charges in front of it as

test point g

T ds’

=-1, (Z,t)‘[e ¢ WO’(S) «— appears to be a Fourier Transform
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Recalling our discussion of the negative mass instability, we define an
impedance

V=EL=-1(z,t)Z'
We can identify
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convention, because transverse fields
tend to be out of phase
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Calculating wakefields and impedances can be very difficult, even in simple
geometries; however, we’ll see that if we know they exist, we can say
something about their effects, and also about how to measure them.
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