
USPAS Accelerator Physics Final Exam
January 29, 2015

This copy of the final includes solutions, shown in red. Full derivations are given, along with example

sources for the necessary equations. The requested answers are boxed . The number of possible points
for each section of each problem is shown, with a total of 70 points being possible for the exam. Generally,
if an error in one calculation results in errors in subsequent calculations, full credit will be given for the
later calculations, provided their answers are consistent with the earlier (ie, incorrect) value.

General Guidelines

• This is an “open book” exam. You may use the texts, lectures, homeworks, or any of the online resources,
including previous finals. You are expected to work independently and to not seek out other sources for the
solutions.

• There are a total of three problems, which do not have equal weight.

• You may use anything that appeared in the lectures, textbook or assigned homework, without re-deriving it.

• Full or partial credit will only be given if your reasoning can be followed, so show your work. Please give
answers in the requested [units] when specified.

• The exam is due at 9AM tomorrow. Late exams will have their score reduced by 10%, with an additional
10% deducted for each additional hour.

• All problems are straightforward applications of what you have learned. There are no trick questions or
complex calculations. If you find yourself working hard, it’s a good sign you’re not doing the problem
correctly.

• If you think there’s a problem with the test, contact Eric at 630-336-1893 or prebys@fnal.gov. Any necessary
corrrections or clarifications will be sent to the email list and posted on the web page, so check both frequently!

All three problems will be based on our standard symmetric FODO cell, which we have seen many times:

!! !!!! !!

2F! $F!

L! L!

2F!

where each cell contains focusing and defocusing quadrupoles of focal lengths (in the horizonal plane) of F and
−F , respectively, spaced L apart . Positions s within the cell are measured from the center of the first focusing
quadrupole. You may use the usual thin lens approximation for the quadrupoles. In all cases, “focusing quadrupole”
and “defocusing quadrupole” will refer to the quadrupoles which focus or defocus, respectively, in the bend (x)
plane.
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Problem 1 (18 points total)

a. Write expressions for all Twiss parameters in the bend plane (αx,βx, and γx) immediately before and immedi-
ately after each focusing and defocusing quadrupole (ie, four sets total). Express your answers in terms of (as
appropriate) βmax, βmin, F , and L. (Hint: invoke appropriate symmetry arguments to simplify the problem.)
(4 points)

We’ll calculate the Twiss parameters before and after each quadrupole, as inticated by locations
”1” through ”4” below:

!! !!!! !!

2F! $F!

L! L!

2F!

1 2 3 4

You showed in HW 4.1 that a thin quadrupole transforms the lattice function as

α1 = α0 + β0
1

f

β1 = β0

γ1 = γ0 + 2
α0

f
+
β0
f2

We know from the calculations you did for Lab 4 (or the first problem in last year’s final) that the
Twiss parameters at the centers of the focusing and defocusing quads are given by

 α0

β0
γ0

 =

 0
βmax(

1
βmax

)
 and

 0
βmin(

1
βmin

)


respectively, so we can quickly the lattice functions at locations 1 as

α1 =
βmax
2F

β1 = βmax

γ1 =
1

βmax
+
βmax
4F 2

We can get the lattice functions just after the defucusing quadrupole (point 3) by substituting βmin
for βmax and changing the sign of F

α3 = −βmin
2F

β3 = βmin

γ3 =
1

βmin
+
βmin
4F 2

There are two ways to solve for the lattice parameters at locations 2 and 4. The easiest is to invoke
a symmetry argument. If we reverse the direction of the FODO cell, it looks exactly the same.
Since γ and β are related to the distributions of the particles, they will clearly be the same before
and after each quadrupole. On the other hand α = −1/2dβ/ds is a derivative, so to maintain the
overall symmetry of the problem, it must have an opposite sign on each side of the the quadrupoles,
so

α2 = −α3 = −βmin
2F
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β2 = β3 = βmin

γ2 = γ3 =
1

βmin
+
βmin
4F 2

and

α4 = −α1 = −βmax
2F

β4 = β1 = βmax

γ4 = γ1 =
1

βmax
+
βmax
4F 2

If you don’t like the symmetry argument, then you can plug these back into the original equations
and solve, as

β0 = βmax = β4 → β4 = βmax

α0 = 0 = α4 + β4/(2F )→ α4 = −βmax
2F

γ0 =
1

βmax
= γ4 + 2

α4

(2F )
+

β4
(2F )2

= γ4 −
βmax
2F 2

+
βmax
4F 2

= γ4 −
βmax
4F 2

→ γ4 =
1

βmax
+
βmax
4F 2

You can then plug in the lattice functions at the center of the defocusing quadrupole and solve for
location 2 as

βdefocus = βmin = β2 → β2 = βmin

αdefocus = 0 = α2 − β2/(2F )→ α3 = +
βmin
2F

γdefocus =
1

βmin
= γ2 − 2

α2

(2F )
+

β2
(2F )2

= γ2 −
βmin
2F 2

+
βmin
4F 2

= γ2 −
βmin
4F 2

→ γ2 =
1

βmin
+
βmin
4F 2

Note! The fact that the γ function doesn’t change over a drift implies that

γ2 = γ1 = γ4 = γ3 →
1

βmax
+
βmax
4F 2

=
1

βmin
+
βmin
4F 2

This can in fact be proven with a little bit of algebra

b. The quadrupoles are placed L=10m apart, and the desired phase advance per cell is 103◦. What is the
required focal length F? [m] (2 points)

From our discussion in class and from the calculations you did for Lab4, we have that

sin
µ

2
=

L

2F
→ F =

L

2 sin µ
2

=
(10)

2 sin
(
103◦

2

) = 6.39 m

c. What are the values of βmax and βmin? [m] (2 points)

From our discussion in class and from the calculations you did for Lab4, we have that

βmax,min = 2L
1± sin µ

2

sinµ
= 2(10)

1± sin
(

103◦

2

)
sin(103◦)

→ βmax = 36.59 m, βmin = 4.46 m
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d. If I build a ring out of N=58 of these cells, what are the circumference C [m] and the tune ν [number]? (2
points)

Each cell is 2L long, so the total circumference is

C = 2LNcell = 2(10)(58) = 1160 m

The tune will be given by

ν =
µ

2π
=

(58)(103◦)

(360◦)
= 16.594

e. As you learned when you studied coupling, having exactly equal tunes in both planes is not actually a good
idea, If I modify each cell by uniformly increasing the magnetic gradient of all 58 of the focusing quadrupoles
by 0.1%, what will be the approximate total change in the tunes νx and νy in the x and the y planes,
respectively? [numbers] (Hint: think of the change in gradient as the addition of a small quadrupole right
next to the existing one, and be careful with your signs.) (4 points)

Increasing the gradient of the focusing quads by a small fractional amount κ is equivalent to adding
a quad right next to it with an effective strength given by

1

feff
= κ

1

F

We learned in class (p. 7 of the ”Imperfections” lecture) that the tuneshift caused by a small
quadrupole term is

∆ν =
1

4π

β

f

The tuneshifts in each cell will add, so the total tuneshift in the x plane will be

∆νx = Ncell
1

4π
βmaxκ

1

F
= (58)

1

4π
(36.6)(.001)

1

(6.4)
= .0264

In the y plane, βmax → βmin and F → −F , so

∆νy = Ncell
1

4π
βminκ

1

−F
= (58)

1

4π
(4.46)(.001)

1

(−6.4)
= −.00322

f. If my ring has anomalous magnetic errors up to and including sextupole terms, what values of the fractional
tune could cause resonant instabilities? (1 point)

This question appeared verbatim on the 2014 final exam.

We showed (“Floquet coordinates and resonances”, page 10) that quadrupoles can lead to resonances
at the whole and half integer tunes and that sextupoles can lead to resonances at third integer tunes,
so we should avoid tunes with a fractional component of

0,
1

3
,

1

2
,

2

3
, and 1

g. Based on your answers to the previous two questions, what would be the smallest magnitude change in the
gradients of the 58 focusing magnets that could subject the beam to a resonant instability? [percentage] (be
sure to look at both signs and both planes) (3 points)

We showed in part (c) that the unperturbed tune is νx=νy=16.594. The nearest resonance in both
planes will be ν = 16 2

3 , so a tuneshift of ∆ν = (16 2
3 − 16.594) = +.07222 wil put the machine onto

a third integer resonance. Because the β function is larger in the x plane, it will take a smaller
current to reach the resonance. From the previous question, we have

∆νx = Ncell
1

4π
βmaxκ

1

F

Solving for κ, we have

κ = ∆ν
4πF

Ncellβmax
= (.07222)

4π(6.4)

(58)(36.6)
= .00273 = .273%
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Problem 2 (24 points total)

Assume that the unperturbed lattice described above is designed to accelerate protons from a kinetic energy of
Kmin=5 GeV to a kinetic energy of Kmax=50 GeV. The injected beam has a normalized RMS emittance of 1 µm
in both planes. The quadrupoles are each 2 m long.

a. Calculate the momentum p [GeV/c], relativistic β, period τ [µsec], and beam rigidity (Bρ) [T-m] at the
minimum and maximum energies. (6 points)

We can build a table with the parameters we will need now and later. The requested values are
shown boxed.

Value Formula Injection Extraction

K [GeV] - 5 50
m [GeV/c2] - .938 .938
Es [GeV] K +mc2 5.938 50.938

p [GeV/c]
√
E2
s − (mc2)2/c 5.86 50.93

β pc/Es 0.987 0.999
γ Es/(mc

2) 6.33 54.30
βγ p/(mc2) 6.25 54.30

(Bρ) [T-m] p[GeV]/.300 19.54 169.76
C [m] 2LNcell 1160 1160

τ µsec C/(βc) 3.92 3.92

b. What is the maximum magnetic gradient needed in the quadrupoles? [T/m] (2 points)

We calculated the required focal length in 1b. The relations ship between the focal length and
magnet parameters is

1

F
=

B′L

(Bρ)

The highest gradient will be needed at the highest energy, so we can solve for the required magnetic
gradient with

B′ =
(Bρ)

FL
=

(169.76)

(6.4)(2)
= 13.23 T/m

c. Assuming the injected beam is properly matched, what are the maximum and minimum beam sizes σx,max
and σx,min at the minimum energy? [mm] (4 points)

The minimum and maximum beam sizes are calculated by the minimum and maximum beta func-
tions and the normalized emittance

σx,min =

√
εNβmin
βγ

=

√
(.000001)(4.46)

(6.25)
= .000845 m = .845 mm

σx,max =

√
εNβmax
βγ

=

√
(.000001)(35.58)

(6.25)
= .00242 m = 2.42 mm

d. Assuming the injected beam is properly matched, what are the maximum and minimum angular distributions
σx′,max and σx′,min at the minimum energy? [radians] (4 points)

The maximum σx′ will occur where σx is minumum, at the center of the defocusing quads, and the
minimum σx′ will occur at the center of the focusing quads, so

σx′,max =

√
εNγmax
βγ

=

√
εN

βminβγ
=

√
(.000001)

(4.46)(6.25)
= 1.89× 10−4

and will occur at the center of the focusing quads, so

σx′,min =

√
εNγmin
βγ

=

√
εN

βmaxβγ
=

√
(.000001)

(36.6)(6.25)
= 6.61× 10−5
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e. Based on your previous two answers, sketch the phase space distributions in the x plane at the center of the
focusing and defocusing quads at injection (minimum energy). In each plot, clearly indicate the RMS extrema
σx,max, σx,min, σx′,max and σx′,min that you calculated above. (The plots need not be terribly precise, but
should be drawn to the same scale such that the relative sizes of the key features are qualitatively correct).
(4 points)

The distribution at the center of the focusing magnet will have σx = σx,max and σx′ = σx′,min and
the distribution at the center of the defocusing magnet will have σx = σx,min and σx′ = σx′,max as
illustrated below:

x [mm]

x '  [×10−4 ]

1 2 3

1

2

3

σ "x ,min

σ x,max

Center&of&focusing&
magnet&

x [mm]

x '  [×10−4 ]

1 2 3

1

2

3

σ "x ,max

σ x,minCenter&of&defocusing&
magnet&
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f. Now assume that the injected beam has the correct emittance, but is mismatched, such that the phase space
distribution at the center of the first focusing magnet it encounters looks instead like the distribution for the
defocusing magnet in the previous question. In this case, what is the new effective (diluted) emittance of this
mismatched beam? [µm] (Hint: this question is really easy. If you’re doing a lot of work, you’re doing it
wrong.). (4 points)

As we discussed in class (see page 2 of “Matching and insertions”), the individual particles of the
injected beam will follow the same trajector that a matched particle would follow, leading to the
new effective emittance illustrated below

x [mm]

x '  [×10−4 ]

2 4 6

2

4

6mismatched*beam*

Matched*distribu/on* Actual*distribu/on*

New*effec/ve*emi8ance*

There are several ways to calculate the effective emittance. We see that the new effective emittance
will be defined be the size of σx′ . In the mismatched beam, this is

σ′x′ = σx′,max =

√
εN

βminβγ

But we can also express this as an effective emittance and equate the two

σ′x′ =

√
εeff,N
βmaxβγ

=

√
εN

βminβγ
=→ εeff,N

βmax
βmin

= (1)
(36.59)

(4.46)
= 8.2 µm
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Problem 3 (28 points total)

In this problem, we will consider the RF system for the synchrotron described above. The RF system operates at a
harmonic h=188 and the transition gamma is γt=15. When the beam is injected, the synchroton is not accelerating.
Once the protons have been injected, they are accelerated from the kinetic energy Kmin=5 GeV to Kmax=50 GeV
and then extracted, as illustrated below

Kmin

Kmax

dEs

dt

Ks

t

injec&on( extrac&on(

The injected beam is transferred from another accelerator, where it was bunched at the same RF frequency finj .
Each bunch in the injected beam has an RMS energy spread of σE/E of 0.1% and an RMS time distribution of
σt=2 ns.

a. What are the RF frequencies finj and fext at injection and extraction? [MHz]. ( 3 points)

We calculated βinj and βext in problem 2a above, so

finj =
h

τinj
=
hβc

C
=

(188)(.987)(3× 108)

(1160)
= 48.0× 106 = 48.0 MHz

fext =
h

τext
=
hβc

C
=

(188)(1.0)(3× 108)

(1160)
= 48.6× 106 = 48.6 MHz

b. What are the slip factors ηinj and ηext at injection and extraction? (3 points)

We showed on “Off Momentum Particles”, slide 7 that

η =
1

γ2t
− 1

γ2
→ ηinj =

1

(15)2
− 1

(6.33)2
= −.021 , ηext =

1

(15)2
− 1

(54.3)2
= .0041

c. What is the RMS longitudinal emittance εL of the injected beam? [eV-s] (2 points)

The normalized longitudinal emittance is given be the product of the time disribution and energy
distribution

εL = σEσt = Es
∆E

E
σt = (5.938× 109)(.001)(2× 10−9) = .012 eV − s
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d. If I want to correctly match my RF to the longitudinal bunch shape of the injected beam, what value of peak
RF voltage V0 do I need? [MV] (4 points)

The shape of the bunch is described by the longitudinal beta function (see “Longitudinal Motion,
p. 8 and 9”)

βL =
σt
σe

=
(2× 10−9)

(5.938× 109)(.001)
= 3.37× 10−16 s/eV

If it is correctly matched to the RF system, then it is related to the RF system by

βL =

√
− τη

eV0ωRFβ2 cosφs
=

√
− τ2η

2πeV0hβ2 cosφs

Putting in the non-accelerating case (cosφs = ±1) and solving for V0, we get

V0 =
1

e

τ2|η|
2πβ2

LhEsβ
2

=
1

e

(3.9× 10−6)2(.021)

2π(3.37× 10−16)2(188)(5.938)(.987)2
= 405324 = .41 MV

e. I advance the synchronous phase angle to φs=60◦. What is the initial acceleration of the beam dEs/dt?
[GeV/s] (2 points)

The energy ramp rate is given by the energy gained per turn over the period

dEs
dt

=
V0 sinφ

τ
=

(.41× 106)(sin 60◦)

(3.9× 10−6)
= 89.6× 109 = 89.6 GeV/s

f. I adiabatically accelerate the beam to Kmax, and then adiabatically stop accelerating. If my peak voltage is
still the V0 I calculated above, what are the values for the RMS values σE [MeV] and σt [ns] at this point?
(4 points)

If we accelerated the beam adiabatically, then the longidinal emittance which we calculated in part
b is conserved, so we just need to calculate the new longidunal beta function

βL =

√
− τη

eV0ωRFβ2 cosφs
=

√
− τ2η

2πeV0hβ2 cosφs
=

(3.9× 10−6)2(0.0041)

2π(.41× 106)(sin 60◦)(188)(1)2
= 5.0×10−17

We can then use this and the longitudinal emittance to calculate the new energy and time distri-
butions

σE =

√
εL
βL

=

√
(.012)

(5.0× 10−17)
= 15.4× 106 = 15.4 MeV

σt =
√
εLβL =

√
(.012)(5.0× 10−17) = 7.72× 10−10 = .77 ns
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g. I wish to do a bunch rotation to decrease the time distribution slightly prior to extraction. I quickly (non-
adabatically) increase the RF voltage to V ′0 = 4 ∗ V0. How many revolution periods of the machine do I then
need to wait before extracting the beam in order to achieve the minimum RMS time distribution σt? [turns]
(4 points)

As discussed in the “Longitudinal Motion 2” lecture, we’ll want to let the bunch rotate for a quarter
of a synchrotron period. We can calculate the synchrotron tune from (“Longitudinal Motion 1”,
page 6) using the the new voltage V = 4V0 and cosφs = −1

νs =
1

2π

√
−eV

′
0ωRF τη

Esβ2
cosφs =

1

2π

√
−eV

′
02πhη

Esβ2
=

√
eV ′0hη

2πEsβ2
=

√
(4× .41× 106)(188)(.0041)

2π(50.938× 109)(1.)2
= .00198

We then want to wait 1/4 of a synchrotron cycle to extract at with the narrowest σt, or

nrot =
1

4

1

νs
=

1

4(.0198)
≈ 126 turns

h. If I extract the beam at this optimum time, what is the RMS of the time distribution σt of each extracted
bunch? [ns] (Hint: this is not hard, but you have to think a bit. Consider the relative sizes of the dimensions
of the bunch to what they would be for a properly matched bunch right after the voltage is increased, and
then think about what this implies after the rotation.). (6 points)

Changing the voltage (and nothing else) will change the longitudinal beta, which is given by

βL =

√
− τη

eV0ωRFβ2 cosφs
∝ 1√

V0

so quadrupling the voltage will reduce the longitudinal beta to

β′L =
1√
4
βL =

1

2
βL

The energy and time distributions of a matched bunch are given by

σ′E =

√
εL
βL
∝∝ 1√

βL
∝ V 1/4

0

and

σ′t =
√
εLβL ∝

√
betaL ∝

1

V
1/4
0

So if we had adiabatically increased the voltage by a factor of 4, then the energy and time distribu-
tions would have changed to

σ′E = 41/4σE =
√

2σE and σ′t =
1

41/4
σt =

1√
2
σt

However, we non-adiabtically increase the voltage, so compared to a matched bunch of the same
longitudinal emittance, σE is a factor of

√
2 too small, and σt is a factor of

√
2, as illustrated below

Δt

ΔE

Actual'bunch'distribu/on'
(matched'at'V=V0)'

Bunch'distribu/on'which'
would'be'matched'at''V=4V0'

σ E

!σ E

V '→ 4V0

!σ t

σ t
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The individual particles will follow trajectory of a matched bunch, so after 1/4 of a synchrotron
period, the situation will reverse, with σE being a factor of

√
2 too large and σt being a factor of√

2 too small, as shown below

Δt

ΔE

Rotated'bunch'distribu0on'

Bunch'distribu0on'which'
would'be'matched'at''V=4V0'

!σ t

A:er'¼'synchrotron'period' !!σ t

So we can see that the new time distribution will be

σ′′t =
σ′t√

2
=
σt/sqrt2√

2
=
σt
2

=
(.77)

2
= .34 ns
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