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Perturbations (non-linear or otherwise)

- In our earlier lectures, we found the general equations of motion

) By(x,s) X ? p+X This part gave us
X =- (Bp) 1"‘; "‘7 the Hill's equation
B (y,s) X 2 [ |
S A [ i — /
y (Bp) ( p) B, =B, +Bx+AB,(x,s)
- We initially considered only the linear B, = B'y+AB (y,s)
fields, but now we will bundle all S S
additional terms into AB Move this to the
- non-linear plus linear field errors other side of the
. equation
- We see that if we keep the lowest
order term in AB, we have , |1 B 1
X"+ —+ x=——ABy(x,s)
7 ool o)

- B’ _ 1
4 (Bp)y (Bp)ABX(y’S)
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Floquet Transformation

- Evaluating these perturbed equations can be very complicated, so we
will seek a transformation which will simplify things

- Our general equation of motion is

x(8) = A B(s) cos(y (s) + 6)

- This looks quite a bit like a harmonic oscillator, so not surprisingly
there is a transformation which looks exactly like harmonic oscillations



Plugging back into the Equation dp_dgpdy 1

ds dyds vf
1 1 1/2 d§ d¢ 1 3

X \/7/35 p d—¢g=— ﬁ§+ \/55 a=—%[3”
1
= /),(5—0”/5) Gt
o a 1 (& _a_gi‘ _
X V332 (§+0(V§)+V /3’(1//3 avs /),J
E —Vz(a2§+ /3’0:')5
V2ﬁ3/2

So our differential equation becomes

x"+K(s)x = S-v (aﬁ:/—z/a’a )§ +K(s)B'°E
%

_ 5—1/2(052 +/3’a'—ﬁ2K)§ __AB
V2/_))3/2 (BIO)
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When we derived chromaticity in terms of lattice functions
(“Off-momentum particles lecture), we showed that:

KB*-Bo'-a’=1
So our rather messy equation simplifies

é—vz(az +/3’0:'—/3’2K)§ __AB
V2ﬂ3/2 (BIO)

— §+V2§ _ —V2/3)3/2—
(Bp)
Harmonic \ Driving

Oscillator Term
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Understanding Floquet Coordinates

In the absence of nonlinear terms, our equation of motion ¢
is simply that of a harmonic oscillator

s
E(9)+Vv?E(P) =0
and we write down the solution
E(g) = acos(v¢+5) \

E(9) = —avsin(vp+0) N

Thus, motion is a circle in the( ) plane
Using our standard formalism, we can express this as

cos(vp)  fisin(vo) [

S,O ]; where f3 1

§(¢)=§0cos(v¢)+%sin(v¢) :>[ E(¢) ] _
& v

E(9)= —Eovsin(v¢)+§0 Cos(v¢) E(9)

A common mistake is to view ¢ as the phase angle of the oscillation.

v¢ the phase angle of the oscillation

¢ advances by 21T in one revolution, so it's related (but NOT equal to!) the angle
around the ring.

Note: x° =Be=BE. =Ba’=a’=¢

—%sin(wp) Cos(wp)

unnormalized!
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Perturbations

In general, resonant growth will occur if the perturbation has a
component at the same frequency as the unperturbed oscillation; that

is if
AB(E,¢) = ae™ +(...) = resonance!
We will expand our magnetic errors at one point in ¢ as Note:
AB(x)= by +bx+b,x* +byx’ b, = 1"3 b b, =b,(s)
n! ox" my0
=b,(9)
X = \/ES v:B"AB v 32 42 5127 £2 "
_ =— b+ B bE+LDE +...
)~ (o) " &)
) v? (n+3)/27. en
E+viE= ( b5
But in general, b, is a function of d, as is B3, so we bundle all the
dependence |nto harmonics of ¢ B2y E
(Bp nim s

So the equation associated with the n driving term becomes

ey _v 2 C n_,img Remember!
E E E ¢,B, and b, are all

functions of (only) ¢

m=—o
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Calculating Driving Terms [enerap=2ms,,

We can Fourier transform to calculate the C,, , coefficients based on the

measured fields 1 2 ,
I’l+ b —lm d

But we generally know things as functlons of s, so we use d¢_—d¢ =li—wds =—/jds
to get e

Where (for a change) we have explicitly shown the s dependent terms.

We're going to assume small perturbations, so we can approximate (38 with the
solution to the homogeneous equation
E+viE=—v E c, E'e"

mM=—
E(p)=a COS(W/)) ; (define starting point so § =0)
1 n n ' ; il
§"=a"cos"(vp|=Rela" — n-k €[ where| = |=——
N 2 kkE - i) -
Ak=2
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Example
ig_ L[ 3 _ 3 B 3 3 =§ 1
coSs 9—23 (( 3 )cos( 39)+( 5 )cos( 8)+( | )cos(0)+( 0 )cos(39)) 4c0s349+400s49

Plugging this in, we can write the nth driving term as

2 4 i " C i(m+vic ) : 3
A gt gee (e

k=—n 2 m=—o0 J ]’(l_])‘

Ak=2
We see that a resonance will occur whenever

m+vk = xv —00 <M <O
where
’V(lik)=im -n=sk=n (Ak=2)
Since m and k can have either sign, we can cover all possible
combinations by writing

m

resonant = 1_ k

14

Reminder
n= power of multipole expansion (quad=1, sextupole=2, octupole=2, etc)

m= Fourier component of anomalous magnetic component when
integrated around the ring.
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'ypes of Resonances

n k Order Resonant tunes Fractional Tune at
Magnet Type |1-K| v=m/(1-k) Instability
Dipole 0] 0] 1 m 0,1

1 1 0 none (tune shift) -
Quadrupole

1 -1 2 m/2 0,1/2,1

2 2 1 m 0,1
Sextupole 2 0 1 m 0,1

2 -2 3 m/3 0,1/3,2/3,1

3 3 2 m/2 0,1/2,1

3 1 0 None -
Octupole

3 -1 2 m/2 0,1/2,1

3 -3 4 m/4 0,1/4,1/2,3/4,1
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Example: Sextupole (Third Order Resonance)

- The third order resonance will occur at tunes near m/3.
- The strength of the resonance will be given by

Sextupole term \>B" J— (()J%ri\r\]/aerr; ?)izlé;o
A =§ﬁ[3’3/2 cos(3y )ds
m.2 2(Bp) angle |34 -3y
" B = bz
B ,=¢p" sin 3y )ds 2
Sﬁ 2(Bp)
- It will perturb the stable region of phase space into a
triangle
Relative size of /
Terms determine R
A,,=0 Orientation in
phase space

B,,=0
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Strength of Resonance

The size of the stable region in phase space with shrink
with increased driving strength or by moving the tune

closer to m/3. "
ov=v——
3
m:— 8 g _ Eﬁﬁm COS 31/J)ds [L]—1/2
I %, ]
'L e e " _45[36/2 B’ Sln 31/))dS [L]_1/2
‘% n'_nﬂl"ﬁ “T' . '\ ) ~ 64‘.77:26'\/
8 I ' ] max 2 2
.'5;-* . — 3(Am,2+Bm,2)
-IDL o :.f:u _ \/38 AZ +Bz
TP PP DL OV = ( m,2 ’"'2)
e ) 5 87
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Simulation of Third Integer Extraction™

1
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Application of Resonance

- If we increase the driving term (or move the tune closer to m/3), then
the area of the triangle will shrink, and particles which were inside the
separatrix will now find themselves outside <

- These will stream out along the asymptotes
at the corners.

- These particles can be intercepted
by an extraction channel
- =»Slow extraction (ms to many seconds)
- Very common technique

Unstable beam motion ;
in N(order) turns Extraction Field

' Extracted beam

Lost beam

Septum

>
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Example: Mu2e Experiment 8 GeV Extraction

- Use sextupoles to drive 3 integer resonance

20 e Moving tune closer to m/3 will
0 0 T L N VOO W reduce stable phase space,

1 I R B R B causing beam to be removed at
-~ a steady rate

az +6z" (mm)

R T

-20 i i i i i L i
-20 -15 -10 -5 0 5 10 15 20

x (mm)
\ Electrostatic septum at 80 kV/1cm

deflects beam into a downstream
Lambertson magnet
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Coupling

Introduce skew-quadrupole term 5/ oc — 9B, ¥ — dB,  Planes coupled

y ;
ox J x and y motion not
0B, 0B, Y independent
=— #0 . OB oB
ox Jy y o« —Ly4+—Lx
dy 0x

General Transfer Matrix

1 B’l
y ‘,’ f" (Bp)
x’ X,
y |~ ( )
Yo 1 0 0 O
y’ / | —¢ 1. 0 0
\ ) \ yO ) MQ = O 0 | O
\ 0 0 g 1 )
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Skew quad
. Bl
B.=B'x— Ay = X=gx
(Bp)
. Bl
B,=-By—>A'="——<y=qy
. ' (Bp)

So the transfer matrix for a skew quad would be:

100 0
01 & 0
M. = 1
= 00 1 0
500 1

For a normal quad rotated by ¢ it would be

[ o o0 0
—qgcos2¢p 1 —gsin2¢p O
MQ:
0 0 1 0
L —gsin2¢9 0 gcos2¢p 1 )
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Coupled Tunes

(v+v) <=aJB.5,

V=
2
ov=v -v, If there’s no coupling, then
2 _ oV
v, =72 e K~ v,=Vi—
* 2 A7V - 2
=\71L\/47L’26V2+K2 — vx,y
4

If there’s coupling, then there will Vv
always be a tune split

-+

V.=V, =V

— v =0 y

A,vmin = V+ -V

Kk BB, ;

27 27
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USPAS Fundamentals, June 4-15, 2018

Example: Tune Coupling in LHC

Flle Edit Run Timing Conflgure

(@]~ rex thcop userjunc |- [err __-E

E. Prebys, Accelerator Fundamentals: Resonances and Coupling

]

Help

1’ Info | FFT | PLL rDataSets rFBanm [ orbit | Graph | - ‘E @

ACQH] UE Misc

LHC - B1 - fill #3900 - avg. of 2 datasets - LHC.BQBBQ.UA47 FFT2_B1 - 2009-12-0...

Qy = 5.113084 [uza |

LHC - B1 - Fill#900.0 g

2009-12-05 10:45:10 g

RAWS&FFT: 8192 turns@1.0Hz s

PLL/BTF??

Q1= .280254 Qx= .280335 -1407

Q2= .310611 Qy = .310530 1604

IC-I = 003132 E = 4500 GeV l'l.l23 0.I24 0.I25 l'l.l26 0.I27 0.I28 0.'29 .3 0.5-!1 0.1:32

Q'x = 4.567151 frequency [frev]
_Graph |

Misc

Spawn TuneYiewer Display

Comments:
[avg. of 2 datasets

@

>

1>

auto-save T T T T T
o ’ 0.27 0.28 0.29 0.3 0.31

Y

10:48:26 - TuneDataSet::Save ToFromSODSFile(fusenslopsidata/i HC_DATA/OR_DATA/FILL DATA/FILL DiIRfAuneviewern! Tuneliewer LHCB1_LHC 2009-12-05_1045...

T
0.34
frequency [frev]

T
0.33

'8
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Coupling and Resonances

Although we won’t derive it in detalil, it's clear that if motion is
coupled, we can analyze the system in terms of the normal
coordinates, and repeat the analysis in the last chapter. In this
case, the normal tunes will be linear combinations of the tunes in
the two planes, and so the general condition for resonance

This appears as a set of crossing
lines in the nx,ny “tune space”.

The width of individual lines
depends on the details of the
machine, and one tries to pick

a “working point” to avoid 4.
the strongest resonances.




